question_std.ml 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(**************************************************************************)
(*                                BELENIOS                                *)
(*                                                                        *)
(*  Copyright © 2012-2019 Inria                                           *)
(*                                                                        *)
(*  This program is free software: you can redistribute it and/or modify  *)
(*  it under the terms of the GNU Affero General Public License as        *)
(*  published by the Free Software Foundation, either version 3 of the    *)
(*  License, or (at your option) any later version, with the additional   *)
(*  exemption that compiling, linking, and/or using OpenSSL is allowed.   *)
(*                                                                        *)
(*  This program is distributed in the hope that it will be useful, but   *)
(*  WITHOUT ANY WARRANTY; without even the implied warranty of            *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *)
(*  Affero General Public License for more details.                       *)
(*                                                                        *)
(*  You should have received a copy of the GNU Affero General Public      *)
(*  License along with this program.  If not, see                         *)
(*  <http://www.gnu.org/licenses/>.                                       *)
(**************************************************************************)

open Platform
open Common
open Signatures_core
25
open Serializable_builtin_t
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
open Serializable_core_t
open Question_std_t

(** Helper functions *)

let check_modulo p x = Z.(geq x zero && lt x p)

let question_length q =
  Array.length q.q_answers + match q.q_blank with
                             | Some true -> 1
                             | _ -> 0


module Make (M : RANDOM) (G : GROUP) = struct
  open M
  open G

  let ( >>= ) = M.bind
  let ( / ) x y = x *~ invert y

  let dummy_ciphertext =
    {
      alpha = G.one;
      beta = G.one;
    }

  (** Multiply two ElGamal ciphertexts. *)
  let eg_combine c1 c2 =
    {
      alpha = c1.alpha *~ c2.alpha;
      beta = c1.beta *~ c2.beta;
    }

  (** ElGamal encryption. *)
  let eg_encrypt y r x =
    (* FIXME: side channel *)
    let g' = if x = 0 then G.one else g **~ Z.of_int x in
    {
      alpha = g **~ r;
      beta = y **~ r *~ g';
    }

  let dummy_proof =
    {
      challenge = Z.zero;
      response = Z.zero;
    }

  (** Fiat-Shamir non-interactive zero-knowledge proofs of
      knowledge *)

  let fs_prove gs x oracle =
    random q >>= fun w ->
    let commitments = Array.map (fun g -> g **~ w) gs in
    let challenge = oracle commitments in
    let response = Z.((w + x * challenge) mod q) in
    return {challenge; response}

  (** ZKPs for disjunctions *)

  let eg_disj_prove y d zkp x r {alpha; beta} =
    (* prove that alpha = g^r and beta = y^r/d_x *)
    (* the size of d is the number of disjuncts *)
    let n = Array.length d in
    assert (0 <= x && x < n);
    let proofs = Array.make n dummy_proof
    and commitments = Array.make (2*n) g
    and total_challenges = ref Z.zero in
    (* compute fake proofs *)
    let f i =
      let challenge = random q
      and response = random q in
      challenge >>= fun challenge ->
      response >>= fun response ->
      proofs.(i) <- {challenge; response};
      commitments.(2*i) <- g **~ response / alpha **~ challenge;
      commitments.(2*i+1) <- y **~ response / (beta *~ d.(i)) **~ challenge;
      total_challenges := Z.(!total_challenges + challenge);
      return ()
    in
    let rec loop i =
      if i < x then f i >>= fun () -> loop (succ i)
      else if i = x then loop (succ i)
      else if i < n then f i >>= fun () -> loop (succ i)
      else return ()
    in loop 0 >>= fun () ->
    total_challenges := Z.(q - !total_challenges mod q);
    (* compute genuine proof *)
    fs_prove [| g; y |] r (fun commitx ->
      Array.blit commitx 0 commitments (2*x) 2;
      let prefix = Printf.sprintf "prove|%s|%s,%s|"
        zkp (G.to_string alpha) (G.to_string beta)
      in
      Z.((G.hash prefix commitments + !total_challenges) mod q)
    ) >>= fun p ->
    proofs.(x) <- p;
    return proofs

  let eg_disj_verify y d zkp proofs {alpha; beta} =
    G.check alpha && G.check beta &&
    let n = Array.length d in
    n = Array.length proofs &&
    let commitments = Array.make (2*n) g
    and total_challenges = ref Z.zero in
    try
      for i = 0 to n-1 do
        let {challenge; response} = proofs.(i) in
        if check_modulo q challenge && check_modulo q response then (
          commitments.(2*i) <- g **~ response / alpha **~ challenge;
          commitments.(2*i+1) <- y **~ response / (beta *~ d.(i)) **~ challenge;
          total_challenges := Z.(!total_challenges + challenge);
        ) else raise Exit
      done;
      total_challenges := Z.(!total_challenges mod q);
      let prefix = Printf.sprintf "prove|%s|%s,%s|"
        zkp (G.to_string alpha) (G.to_string beta)
      in
      Z.(hash prefix commitments =% !total_challenges)
    with Exit -> false

  (** ZKPs for blank ballots *)

  let make_blank_proof y zkp min max m0 c0 r0 mS cS rS =
    let zkp = Printf.sprintf "%s|%s,%s,%s,%s,%s,%s" zkp
                (G.to_string g) (G.to_string y)
                (G.to_string c0.alpha) (G.to_string c0.beta)
                (G.to_string cS.alpha) (G.to_string cS.beta)
    in
    if m0 = 0 then (
      let blank_proof =
        (* proof of m0 = 0 \/ mS = 0 (first is true) *)
        random q >>= fun challenge1 ->
        random q >>= fun response1 ->
        let commitmentA1 = g **~ response1 *~ cS.alpha **~ challenge1 in
        let commitmentB1 = y **~ response1 *~ cS.beta **~ challenge1 in
        random q >>= fun w ->
        let commitmentA0 = g **~ w and commitmentB0 = y **~ w in
        let prefix = Printf.sprintf "bproof0|%s|" zkp in
        let h = G.hash prefix [|commitmentA0; commitmentB0; commitmentA1; commitmentB1|] in
        let challenge0 = Z.(erem (h - challenge1) q) in
        let response0 = Z.(erem (w - r0 * challenge0) q) in
        return [|
            {challenge=challenge0; response=response0};
            {challenge=challenge1; response=response1};
          |]
      in
      let overall_proof =
        (* proof of m0 = 1 \/ min <= mS <= max (second is true) *)
        assert (min <= mS && mS <= max);
        random q >>= fun challenge0 ->
        random q >>= fun response0 ->
        let proof0 = {challenge=challenge0; response=response0} in
        let overall_proof = Array.make (max-min+2) proof0 in
        let commitments = Array.make (2*(max-min+2)) g in
        let total_challenges = ref challenge0 in
        commitments.(0) <- g **~ response0 *~ c0.alpha **~ challenge0;
        commitments.(1) <- y **~ response0 *~ (c0.beta / g) **~ challenge0;
        let index_true = mS-min+1 in
        let rec loop i =
          if i < max-min+2 then (
            if i <> index_true then (
              random q >>= fun challenge ->
              random q >>= fun response ->
              let g' = if min+i-1 = 0 then G.one else g **~ Z.of_int (min+i-1) in
              let nbeta = cS.beta / g' in
              let j = 2*i in
              overall_proof.(i) <- {challenge; response};
              commitments.(j) <- g **~ response *~ cS.alpha **~ challenge;
              commitments.(j+1) <- y **~ response *~ nbeta **~ challenge;
              total_challenges := Z.(!total_challenges + challenge);
              loop (i+1)
            ) else loop (i+1)
          ) else return ()
        in
        loop 1 >>= fun () ->
        random q >>= fun w ->
        let j = 2 * index_true in
        commitments.(j) <- g **~ w;
        commitments.(j+1) <- y **~ w;
        let prefix = Printf.sprintf "bproof1|%s|" zkp in
        let h = G.hash prefix commitments in
        let challenge = Z.(erem (h - !total_challenges) q) in
        let response = Z.(erem (w - rS * challenge) q) in
        overall_proof.(index_true) <- {challenge; response};
        return overall_proof
      in
      blank_proof >>= fun blank_proof ->
      overall_proof >>= fun overall_proof ->
      return (overall_proof, blank_proof)
    ) else (
      let blank_proof =
        (* proof of m0 = 0 \/ mS = 0 (second is true) *)
        assert (mS = 0);
        random q >>= fun challenge0 ->
        random q >>= fun response0 ->
        let commitmentA0 = g **~ response0 *~ c0.alpha **~ challenge0 in
        let commitmentB0 = y **~ response0 *~ c0.beta **~ challenge0 in
        random q >>= fun w ->
        let commitmentA1 = g **~ w and commitmentB1 = y **~ w in
        let prefix = Printf.sprintf "bproof0|%s|" zkp in
        let h = G.hash prefix [|commitmentA0; commitmentB0; commitmentA1; commitmentB1|] in
        let challenge1 = Z.(erem (h - challenge0) q) in
        let response1 = Z.(erem (w - rS * challenge1) q) in
        return [|
            {challenge=challenge0; response=response0};
            {challenge=challenge1; response=response1}
          |]
      in
      let overall_proof =
        (* proof of m0 = 1 \/ min <= mS <= max (first is true) *)
        assert (m0 = 1);
        let nil_proof = {challenge=Z.zero; response=Z.zero} in
        let overall_proof = Array.make (max-min+2) nil_proof in
        let commitments = Array.make (2*(max-min+2)) g in
        let total_challenges = ref Z.zero in
        let rec loop i =
          if i < max-min+2 then (
            random q >>= fun challenge ->
            random q >>= fun response ->
            let g' = if min+i-1 = 0 then G.one else g **~ Z.of_int (min+i-1) in
            let nbeta = cS.beta / g' in
            let j = 2*i in
            overall_proof.(i) <- {challenge; response};
            commitments.(j) <- g **~ response *~ cS.alpha **~ challenge;
            commitments.(j+1) <- y **~ response *~ nbeta **~ challenge;
            total_challenges := Z.(!total_challenges + challenge);
            loop (i+1)
          ) else return ()
        in
        loop 1 >>= fun () ->
        random q >>= fun w ->
        commitments.(0) <- g **~ w;
        commitments.(1) <- y **~ w;
        let prefix = Printf.sprintf "bproof1|%s|" zkp in
        let h = G.hash prefix commitments in
        let challenge = Z.(erem (h - !total_challenges) q) in
        let response = Z.(erem (w - r0 * challenge) q) in
        overall_proof.(0) <- {challenge; response};
        return overall_proof
      in
      blank_proof >>= fun blank_proof ->
      overall_proof >>= fun overall_proof ->
      return (overall_proof, blank_proof)
    )

  let verify_blank_proof y zkp min max c0 cS overall_proof blank_proof =
    G.check c0.alpha && G.check c0.beta &&
    G.check cS.alpha && G.check cS.beta &&
    let zkp = Printf.sprintf "%s|%s,%s,%s,%s,%s,%s" zkp
                (G.to_string g) (G.to_string y)
                (G.to_string c0.alpha) (G.to_string c0.beta)
                (G.to_string cS.alpha) (G.to_string cS.beta)
    in
    (* check blank_proof, proof of m0 = 0 \/ mS = 0 *)
    Array.length blank_proof = 2 &&
    (
      try
        let commitments = Array.make 4 g in
        let total_challenges = ref Z.zero in
        let {challenge; response} = blank_proof.(0) in
        if not (check_modulo q challenge && check_modulo q response) then
          raise Exit;
        commitments.(0) <- g **~ response *~ c0.alpha **~ challenge;
        commitments.(1) <- y **~ response *~ c0.beta **~ challenge;
        total_challenges := Z.(!total_challenges + challenge);
        let {challenge; response} = blank_proof.(1) in
        if not (check_modulo q challenge && check_modulo q response) then
          raise Exit;
        commitments.(2) <- g **~ response *~ cS.alpha **~ challenge;
        commitments.(3) <- y **~ response *~ cS.beta **~ challenge;
        total_challenges := Z.(!total_challenges + challenge);
        let prefix = Printf.sprintf "bproof0|%s|" zkp in
        let h = G.hash prefix commitments in
        let total_challenges = Z.(!total_challenges mod q) in
        Z.(h =% total_challenges)
      with Exit -> false
    ) &&
    (* check overall_proof, proof of m0 = 1 \/ min <= mS <= max *)
    Array.length overall_proof = max-min+2 &&
    (
      try
        let commitments = Array.make (2*(max-min+2)) g in
        let total_challenges = ref Z.zero in
        let {challenge; response} = overall_proof.(0) in
        if not (check_modulo q challenge && check_modulo q response) then
          raise Exit;
        commitments.(0) <- g **~ response *~ c0.alpha **~ challenge;
        commitments.(1) <- y **~ response *~ (c0.beta / g) **~ challenge;
        total_challenges := Z.(!total_challenges + challenge);
        let rec loop i =
          if i < max-min+2 then (
            let {challenge; response} = overall_proof.(i) in
            if not (check_modulo q challenge && check_modulo q response) then
              raise Exit;
            let g' = if min+i-1 = 0 then G.one else g **~ Z.of_int (min+i-1) in
            let nbeta = cS.beta / g' in
            let j = 2*i in
            commitments.(j) <- g **~ response *~ cS.alpha **~ challenge;
            commitments.(j+1) <- y **~ response *~ nbeta **~ challenge;
            total_challenges := Z.(!total_challenges + challenge);
            loop (i+1)
          ) else ()
        in
        loop 1;
        let prefix = Printf.sprintf "bproof1|%s|" zkp in
        let h = G.hash prefix commitments in
        let total_challenges = Z.(!total_challenges mod q) in
        Z.(h =% total_challenges)
      with Exit -> false
    )

  let invg = invert g
  let d01 = [| G.one; invg |]

  let make_d min max =
    let n = max - min + 1 in
    let g' = if min = 0 then G.one else g **~ Z.of_int min in
    let d = Array.make n (invert g') in
    for i = 1 to n-1 do
      d.(i) <- d.(i-1) *~ invg
    done;
    d

  let swap xs =
    let rec loop i accu =
      if i >= 0
      then xs.(i) >>= fun x -> loop (pred i) (x::accu)
      else return (Array.of_list accu)
    in loop (pred (Array.length xs)) []

  let create_answer q ~public_key:y ~prefix:zkp m =
    let n = Array.length m in
    swap (Array.init n (fun _ -> M.random G.q)) >>= fun r ->
    let choices = Array.map2 (eg_encrypt y) r m in
    let individual_proofs = Array.map3 (eg_disj_prove y d01 zkp) m r choices in
    swap individual_proofs >>= fun individual_proofs ->
    match q.q_blank with
    | Some true ->
       (* index 0 is whether the ballot is blank or not,
          indexes 1..n-1 are the actual choices *)
       assert (n = Array.length q.q_answers + 1);
       let choices' = Array.sub choices 1 (n - 1) in
       let r' = Array.sub r 1 (n - 1) in
       let m' = Array.sub m 1 (n - 1) in
       let sumr = Array.fold_left Z.(+) Z.zero r' in
       let summ = Array.fold_left (+) 0 m' in
       let sumc = Array.fold_left eg_combine dummy_ciphertext choices' in
       let bproofs =
         make_blank_proof y zkp q.q_min q.q_max
           m.(0) choices.(0) r.(0) summ sumc sumr
       in
       bproofs >>= fun (overall_proof, blank_proof) ->
       let blank_proof = Some blank_proof in
       return {choices; individual_proofs; overall_proof; blank_proof}
    | _ ->
       (* indexes 0..n-1 are the actual choices *)
       assert (n = Array.length q.q_answers);
       let sumr = Array.fold_left Z.(+) Z.zero r in
       let summ = Array.fold_left (+) 0 m in
       let sumc = Array.fold_left eg_combine dummy_ciphertext choices in
       assert (q.q_min <= summ && summ <= q.q_max);
       let d = make_d q.q_min q.q_max in
       let overall_proof = eg_disj_prove y d zkp (summ - q.q_min) sumr sumc in
       overall_proof >>= fun overall_proof ->
       let blank_proof = None in
       return {choices; individual_proofs; overall_proof; blank_proof}

  let verify_answer q ~public_key:y ~prefix:zkp a =
    let n = Array.length a.choices in
    n = Array.length a.individual_proofs &&
    Array.forall2 (eg_disj_verify y d01 zkp) a.individual_proofs a.choices &&
    match q.q_blank, a.blank_proof with
    | Some true, Some blank_proof ->
       n = Array.length q.q_answers + 1 &&
       let c = Array.sub a.choices 1 (n - 1) in
       let sumc = Array.fold_left eg_combine dummy_ciphertext c in
       verify_blank_proof y zkp q.q_min q.q_max a.choices.(0) sumc a.overall_proof blank_proof
    | _, None ->
       n = Array.length q.q_answers &&
       let sumc = Array.fold_left eg_combine dummy_ciphertext a.choices in
       let d = make_d q.q_min q.q_max in
       eg_disj_verify y d zkp a.overall_proof sumc
    | _, _ -> false

410
  let extract_ciphertexts _ a =
Stephane Glondu's avatar
Stephane Glondu committed
411
    SArray (Array.map (fun x -> SAtomic x) a.choices)
412

413 414 415 416
  let process_ciphertexts q es =
    let neutral = SArray (Array.make (question_length q) (SAtomic dummy_ciphertext)) in
    Array.fold_left (Shape.map2 eg_combine) neutral es

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  let compute_result ~num_tallied =
    let log =
      let module GMap = Map.Make(G) in
      let rec loop i cur accu =
        if i <= num_tallied
        then loop (succ i) (cur *~ g) (GMap.add cur i accu)
        else accu
      in
      let map = loop 0 G.one GMap.empty in
      fun x ->
        match GMap.find_opt x map with
        | Some x -> x
        | None -> invalid_arg "Cannot compute result"
    in
    fun _ x ->
    Shape.map log x

  let check_result _ x r =
    Shape.forall2 (fun x r ->
        let g' = if r = 0 then G.one else g **~ Z.of_int r in
        x =~ g'
      ) x r

440
end