#pragma once /*! \brief a static class allowing to change from one parametrization * to another. * \ingroup core * * \details * Any \typedef function object or \typedef data object should have * an associated parametrization. */ class params { public: // data //! \brief list of all supported parametrization. An unsupported //! parametrization will go under the name unknown. enum type { ROMEIRO_TH_TD, RUSIN_TH_PH_TD, RUSIN_TH_TD_PD, RUSIN_TH_PH_TD_PD, COS_TH_TD, ISOTROPIC_TV_TL_DPHI, ISOTROPIC_TD_PD, // Difference between two directions such as R and H CARTESIAN, SPHERICAL_TL_PL_TV_PV, UNKNOWN }; public: // methods //! \brief static function for input type convertion. This //! function allocate the resulting vector. static double* convert(const double* invec, params::type intype, params::type outtype) { int dim = dimension(outtype); // Get the size of the output vector if(dim > 0) { double* outvec = new double[dim]; double temvec[6]; // Temp CARTESIAN vectors to_cartesian(invec, intype, temvec); from_cartesian(temvec, outtype, outvec); return outvec; } else { return NULL; } } //! \brief static function for input type convertion. The \param //! outvec resulting vector should be allocated with the correct //! output size. static void convert(const double* invec, params::type intype, params::type outtype, double* outvec) { double temvec[6]; // Temp CARTESIAN vectors to_cartesian(invec, intype, temvec); from_cartesian(temvec, outtype, outvec); } //! \brief convert a input vector in a given parametrization to an //! output vector in a cartesian parametrization, that is two 3d //! vectors concatenated. static void to_cartesian(const double* invec, params::type intype, double* outvec) { double half[3]; switch(intype) { // 3D Parametrization case params::RUSIN_TH_PH_TD: half[0] = sin(invec[0])*cos(invec[1]); half[1] = sin(invec[0])*sin(invec[1]); half[2] = cos(invec[0]); break; // 4D Parametrization case params::RUSIN_TH_PH_TD_PD: break; // 6D Parametrization case params::CARTESIAN: memcpy(outvec, invec, 6*sizeof(double)); break; default: throw("Transformation not implemented, params::to_cartesian"); break; } } //! \brief convert a input CARTESIAN vector, that is two 3d vectors //! concatenated to an output vector in a given parametrization. static void from_cartesian(const double* invec, params::type outtype, double* outvec) { // Compute the half vector double half[3] ; half[0] = invec[0] + invec[3]; half[1] = invec[1] + invec[4]; half[2] = invec[2] + invec[5]; double half_norm = sqrt(half[0]*half[0] + half[1]*half[1] + half[2]*half[2]); half[0] /= half_norm; half[1] /= half_norm; half[2] /= half_norm; switch(outtype) { // 2D Parametrizations case params::COS_TH_TD: outvec[0] = half[2]; outvec[1] = half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]; break; // 3D Parametrization case params::RUSIN_TH_PH_TD: outvec[0] = acos(half[2]); outvec[1] = atan2(half[0], half[1]); outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]); break; // 6D Parametrization case params::CARTESIAN: memcpy(outvec, invec, 6*sizeof(double)); break; default: throw("Transformation not implemented, params::from_cartesian"); break; } } //! \brief provide a dimension associated with a parametrization static int dimension(params::type t) { switch(t) { // 2D Parametrizations case params::ISOTROPIC_TD_PD: case params::ROMEIRO_TH_TD: case params::COS_TH_TD: return 2; break; // 3D Parametrization case params::RUSIN_TH_PH_TD: case params::RUSIN_TH_TD_PD: case params::ISOTROPIC_TV_TL_DPHI: return 3; break; // 4D Parametrization case params::RUSIN_TH_PH_TD_PD: case params::SPHERICAL_TL_PL_TV_PV: return 4; break; // 6D Parametrization case params::CARTESIAN: return 6; break; default: return -1; break; } } //! \brief rotate a cartesian vector with respec to another of //! \param theta degrees. static void rotate(double* vec, double* ref, double theta) { const double cost = cos(theta); const double sint = sin(theta); /* vec[0] = ; vec[1] = ; vec[2] = ; */ } //! \brief rotate a cartesian vector with respect to the normal of //! \param theta degrees. static void rotate(double* vec, double theta) { const double cost = cos(theta); const double sint = sin(theta); vec[0] = cost * vec[0] - sint * vec[1]; vec[1] = sint * vec[0] + cost * vec[1]; } };