Commit 77935530 by Laurent Belcour

### [Update] Updating the documentation of parametrizations.

parent 99ce548e
 ... ... @@ -40,26 +40,29 @@ class params public: // data //! \brief list of all supported parametrization for the input space. //! An unsupported parametrization will go under the name //! unknown. We use the following notations: //! * The view vector is \f$\vec{v}\f$ //! * The light vector is \f$\vec{l}\f$ //! * The normal vector is \f$\vec{n}\f$ //! * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$ //! An unsupported parametrization will go under the name ! *unknown*. We //!use the following notations: //! * The View vector is \f$V\f$ //! * The Light vector is \f$L\f$ //! * The Normal vector is \f$N\f$ //! * The Reflected vector is \f$R = 2\mbox{dot}(\vec{V}, \vec{N})\vec{N} - \vec{V}\f$ //! * The Half vector is \f$H = \frac{V+L}{||V+L||}\f$ //! * The Back vector is \f$K = \frac{V-L}{||V-L||}\f$ //! * The elevation angle of vector \f$V\f$ is \f$\theta_V\f$ //! * The azimuth angle of vector \f$V\f$ is \f$\phi_V\f$ enum input { RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */ RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described by Rusinkiewicz [1998] */ RUSIN_TH_PH_TD, RUSIN_TH_TD_PD, RUSIN_TH_TD, /*!< Half-angle parametrization with no azimutal information */ RUSIN_VH_VD, /*!< Half-angle parametrization in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, \vec{d}_z \f$].*/ \f$[H_x, H_y, H_z, D_x, D_y, D_z] \f$.*/ RUSIN_VH, /*!< Half-angle parametrization with no difference direction in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z\f$]. */ COS_TH_TD, /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in $[\cos_\theta_h,\cos_\theta_d]$. */ vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z\f$]. */ COS_TH_TD, /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in \f$[\cos_{\theta_H},\cos_{\theta_D}] \f$. */ COS_TH, SCHLICK_TK_PK, /*!< Schlick's back vector parametrization */ ... ... @@ -93,16 +96,20 @@ class params ISOTROPIC_TD_PD, /*!< Difference between two directions such as R and H */ BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined input Stark et al. [2004]. Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */ Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - (L.V)), (1-(H.N)^2)(1 - \alpha)]\f$ */ // Params goes from (-1,-1) to (1,1) STARK_2D, NEUMANN_2D, STARK_2D, /*!< Modified Stark et al. 2D parametrization. This parametrization is defined by the couple \f$\vec{x} = ||\tilde{H}_p||, ||\tilde{B}|| \f$, where \f$\tilde{H} = \frac{1}{2}(L+V) \f$ and \f$\tilde{B} = \frac{1}{2}(L-V) \f$. \f$\tilde{H}_p \f$ is the projected coordinates of \f$\tilde{H} \f$ on the tanget plane. */ NEUMANN_2D, /*!< Neumann and Neumann parametrization.*/ CARTESIAN, /*!< View and Light vectors represented in cartesian coordinates. We always pack the view vector first: \f$\vec{c} = [v.x, v.y, v.z, l.x, l.y, l.z] \f$*/ We always pack the view vector first: \f$[V.x, V.y, V.z, L.x, L.y, L.z] \f$*/ UNKNOWN_INPUT /*!< Default behaviour. Only use this is you do not fit BRDF data */ }; ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!