Commit 1aa83c01 by PACANOWSKI Romain

### indentation and comment for official documention

parent 68c519ef
 ... ... @@ -37,58 +37,59 @@ class params //! * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$ enum input { RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */ RUSIN_TH_PH_TD, RUSIN_TH_TD_PD, RUSIN_TH_TD, /*!< Half-angle parametrization with no azimutal information */ RUSIN_VH_VD, /*!< Half-angle parametrization in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, \vec{d}_z \f$].*/ RUSIN_VH, /*!< Half-angle parametrization with no difference direction in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z\f$]. */ COS_TH_TD, COS_TH, SCHLICK_TK_PK, /*!< Schlick's back vector parametrization */ SCHLICK_VK, /*!< Schlick's back vector */ SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and the parametrization is centered around the back direction. \f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/ COS_TK, /*!< Schlick's back vector dot product with the normal */ RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and the parametrization is centered around the retro direction \f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL} \sin(\Delta\phi)]\f$.*/ STEREOGRAPHIC, /*!< Stereographic projection of the Light and View vectors */ SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */ COS_TLV, /*!< Dot product between the Light and View vector */ COS_TLR, /*!< Dot product between the Light and Reflected vector */ ISOTROPIC_TV_TL, /*!< Light and View vectors represented in spherical coordinates, */ ISOTROPIC_TV_TL_DPHI, /*!< Light and View vectors represented in spherical coordinates, with the difference of azimutal coordinates in the last component */ ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected. Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v \sin(\Delta\phi).\f$]*/ ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected. Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), \theta_v \sin(\Delta\phi).\f$]*/ ISOTROPIC_TD_PD, /*!< Difference between two directions such as R and H */ BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et al. [2004]. Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */ CARTESIAN, /*!< View and Light vectors represented in cartesian coordinates. We always pack the view vector first: \f$\vec{c} = [v.x, v.y, v.z, l.x, l.y, l.z] \f$*/ UNKNOWN_INPUT /*!< Default behaviour. Only use this is you do not fit BRDF data */ RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */ RUSIN_TH_PH_TD, RUSIN_TH_TD_PD, RUSIN_TH_TD, /*!< Half-angle parametrization with no azimutal information */ RUSIN_VH_VD, /*!< Half-angle parametrization in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, \vec{d}_z \f$].*/ RUSIN_VH, /*!< Half-angle parametrization with no difference direction in vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z\f$]. */ COS_TH_TD, /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in $[\cos_\theta_h,\cos_\theta_d]$. */ COS_TH, SCHLICK_TK_PK, /*!< Schlick's back vector parametrization */ SCHLICK_VK, /*!< Schlick's back vector */ SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and the parametrization is centered around the back direction. \f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/ COS_TK, /*!< Schlick's back vector dot product with the normal */ RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and the parametrization is centered around the retro direction \f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL} \sin(\Delta\phi)]\f$.*/ STEREOGRAPHIC, /*!< Stereographic projection of the Light and View vectors */ SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */ COS_TLV, /*!< Dot product between the Light and View vector */ COS_TLR, /*!< Dot product between the Light and Reflected vector */ ISOTROPIC_TV_TL, /*!< Light and View vectors represented in spherical coordinates, */ ISOTROPIC_TV_TL_DPHI, /*!< Light and View vectors represented in spherical coordinates, with the difference of azimutal coordinates in the last component */ ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected. Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v \sin(\Delta\phi).\f$]*/ ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected. Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), \theta_v \sin(\Delta\phi).\f$]*/ ISOTROPIC_TD_PD, /*!< Difference between two directions such as R and H */ BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et al. [2004]. Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */ CARTESIAN, /*!< View and Light vectors represented in cartesian coordinates. We always pack the view vector first: \f$\vec{c} = [v.x, v.y, v.z, l.x, l.y, l.z] \f$*/ UNKNOWN_INPUT /*!< Default behaviour. Only use this is you do not fit BRDF data */ }; //! \brief list of all supported parametrization for the output space. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!