Commit 1aa83c01 authored by PACANOWSKI Romain's avatar PACANOWSKI Romain

indentation and comment for official documention

parent 68c519ef
......@@ -37,58 +37,59 @@ class params
//! * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$
enum input
{
RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
RUSIN_TH_PH_TD,
RUSIN_TH_TD_PD,
RUSIN_TH_TD, /*!< Half-angle parametrization with no azimutal information */
RUSIN_VH_VD, /*!< Half-angle parametrization in vector format. Coordinates are:
[\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y,
\vec{d}_z \f$].*/
RUSIN_VH, /*!< Half-angle parametrization with no difference direction in
vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y,
\vec{h}_z\f$]. */
COS_TH_TD,
COS_TH,
SCHLICK_TK_PK, /*!< Schlick's back vector parametrization */
SCHLICK_VK, /*!< Schlick's back vector */
SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and
the parametrization is centered around the back direction.
\f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/
COS_TK, /*!< Schlick's back vector dot product with the normal */
RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and
the parametrization is centered around the retro direction
\f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL}
\sin(\Delta\phi)]\f$.*/
STEREOGRAPHIC, /*!< Stereographic projection of the Light and View vectors */
SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
COS_TLV, /*!< Dot product between the Light and View vector */
COS_TLR, /*!< Dot product between the Light and Reflected vector */
ISOTROPIC_TV_TL, /*!< Light and View vectors represented in spherical coordinates, */
ISOTROPIC_TV_TL_DPHI, /*!< Light and View vectors represented in spherical coordinates,
with the difference of azimutal coordinates in the last component */
ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v
\sin(\Delta\phi).\f$]*/
ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi),
\theta_v \sin(\Delta\phi).\f$]*/
ISOTROPIC_TD_PD, /*!< Difference between two directions such as R and H */
BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et al. [2004].
Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}),
(1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */
CARTESIAN, /*!< View and Light vectors represented in cartesian coordinates.
We always pack the view vector first: \f$\vec{c} = [v.x, v.y,
v.z, l.x, l.y, l.z] \f$*/
UNKNOWN_INPUT /*!< Default behaviour. Only use this is you do not fit BRDF data */
RUSIN_TH_PH_TD_PD, /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
RUSIN_TH_PH_TD,
RUSIN_TH_TD_PD,
RUSIN_TH_TD, /*!< Half-angle parametrization with no azimutal information */
RUSIN_VH_VD, /*!< Half-angle parametrization in vector format. Coordinates are:
[\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y,
\vec{d}_z \f$].*/
RUSIN_VH, /*!< Half-angle parametrization with no difference direction in
vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y,
\vec{h}_z\f$]. */
COS_TH_TD, /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in
$[\cos_\theta_h,\cos_\theta_d]$. */
COS_TH,
SCHLICK_TK_PK, /*!< Schlick's back vector parametrization */
SCHLICK_VK, /*!< Schlick's back vector */
SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and
the parametrization is centered around the back direction.
\f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/
COS_TK, /*!< Schlick's back vector dot product with the normal */
RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and
the parametrization is centered around the retro direction
\f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL}
\sin(\Delta\phi)]\f$.*/
STEREOGRAPHIC, /*!< Stereographic projection of the Light and View vectors */
SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
COS_TLV, /*!< Dot product between the Light and View vector */
COS_TLR, /*!< Dot product between the Light and Reflected vector */
ISOTROPIC_TV_TL, /*!< Light and View vectors represented in spherical coordinates, */
ISOTROPIC_TV_TL_DPHI, /*!< Light and View vectors represented in spherical coordinates,
with the difference of azimutal coordinates in the last component */
ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v
\sin(\Delta\phi).\f$]*/
ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi),
\theta_v \sin(\Delta\phi).\f$]*/
ISOTROPIC_TD_PD, /*!< Difference between two directions such as R and H */
BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et al. [2004].
Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}),
(1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */
CARTESIAN, /*!< View and Light vectors represented in cartesian coordinates.
We always pack the view vector first: \f$\vec{c} = [v.x, v.y,
v.z, l.x, l.y, l.z] \f$*/
UNKNOWN_INPUT /*!< Default behaviour. Only use this is you do not fit BRDF data */
};
//! \brief list of all supported parametrization for the output space.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment