Commit 04a6a9da by Laurent Belcour

### The program can be run, but without a firsts solution it is quite useless

parent 037bc35c
 ... ... @@ -83,27 +83,6 @@ void rational_fitter_dca::set_parameters(const arguments& args) _min_np = args.get_float("min-np", _max_np) ; _min_nq = args.get_float("min-nq", _max_nq) ; } bool rational_fitter_dca::fit_data(const data* d, int np, int nq, rational_function* r) { // Multidimensional coefficients std::vector Pn ; Pn.reserve(d->dimY()*np) ; std::vector Qn ; Qn.reserve(d->dimY()*nq) ; for(int j=0; jdimY(); ++j) { if(!fit_data(d, np, nq, j, r)) return false ; for(int i=0; igetP(i)) ; } for(int i=0; igetQ(i)) ; } } r->update(Pn, Qn) ; return true ; } // Bootstrap the DCA algorithm with the Papamarkos fitting // algorithm [Papamarkos 1988] ... ... @@ -117,7 +96,7 @@ void bootstrap(const data* d, int np, int nq, rational_function* fit, double& de // np and nq are the degree of the RP to fit to the data // y is the dimension to fit on the y-data (e.g. R, G or B for RGB signals) // the function return a ration BRDF function and a boolean bool rational_fitter_dca::fit_data(const data* d, int np, int nq, int ny, rational_function* r) bool rational_fitter_dca::fit_data(const data* d, int np, int nq, rational_function* r) { // Size of the problem int N = np+nq+1 ; ... ...
 ... ... @@ -42,7 +42,6 @@ class rational_fitter_dca : public QObject, public fitter // Fitting a data object using np elements in the numerator and nq // elements in the denominator virtual bool fit_data(const data* d, int np, int nq, rational_function* fit) ; virtual bool fit_data(const data* dat, int np, int nq, int ny, rational_function* fit) ; // Bootstrap the DCA algorithm with the Papamarkos fitting // algorithm [Papamarkos 1988] ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment