params.h 13.8 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12
#include "common.h"

13
/*! \class params
14
 *  \ingroup core
15 16
 *  \brief a static class allowing to change from one parametrization
 *  to another.
17
 *
18 19
 *  Any function object or data object should have an associated
 *  parametrization.
20 21 22 23 24 25
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
26 27 28
 */
class params
{
29
    public: // data
30

31 32
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
33 34 35 36 37
		 //! <em>unknown</em>. We use the following notations:
		 //!   * The view vector is \f$\vec{v}\f$
		 //!   * The light vector is \f$\vec{l}\f$
		 //!   * The normal vector is \f$\vec{n}\f$
		 //!   * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$
38 39
		 enum input
		 {
40 41 42 43
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
44 45 46 47 48 49
             RUSIN_VH_VD,           /*!< Half-angle parametrization in vector format. Coordinates are:
				                             [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, 
													  \vec{d}_z \f$].*/
             RUSIN_VH,              /*!< Half-angle parametrization with no difference direction in 
												     vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, 
													  \vec{h}_z\f$]. */
50 51 52
             COS_TH_TD,
             COS_TH,

53 54 55
             SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
             SCHLICK_VK,            /*!< Schlick's back vector */
             COS_TK,                /*!< Schlick's back vector dot product with the normal */
56

57 58 59
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
60
             ISOTROPIC_TV_TL,       /*!< Light and View vectors represented in spherical coordinates, */
61 62
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
63 64 65
				 ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
				                             Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v 
													  \sin(\Delta\phi).\f$]*/
66 67 68
				 ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
				                                Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), 
														  \theta_v \sin(\Delta\phi).\f$]*/
69 70
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

71 72 73 74
				 BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et alL [2004].
				                               Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), 
														 (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */

75 76 77
             CARTESIAN,             /*!< View and Light vectors represented in cartesian coordinates.
				                             We always pack the view vector first: \f$\vec{c} = [v.x, v.y, 
													  v.z, l.x, l.y, l.z] \f$*/
78

79
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
80 81 82 83 84 85 86
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
87 88 89 90 91
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
92 93 94 95 96
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
97 98 99

    public: // methods

100
        //! \brief parse a string to provide a parametrization type.
101
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
102

103 104 105
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
106

107 108 109 110 111 112 113 114 115 116 117 118 119
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

120 121
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
122 123
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
124
        {
125 126 127 128 129
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
130
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
131 132 133 134 135 136 137 138 139 140 141
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

142 143
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
144
        //! output size.
145 146
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
147
        {
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
			  if(intype == params::CARTESIAN)
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
176 177 178 179 180
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
181
        static void to_cartesian(const double* invec, params::input intype,
182
                                 double* outvec);
183 184 185

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
186
        static void from_cartesian(const double* invec, params::input outtype,
187
                                   double* outvec);
188 189

        //! \brief provide a dimension associated with a parametrization
190
        static int  dimension(params::input t);
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
210
                    assert(false);
211 212 213 214 215
                    return -1;
                    break;
            }
        }

216 217 218 219 220 221 222
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
223 224
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
225 226 227
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
228 229
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
230
            out[2] = cos(theta_d);
231

232
				// Rotate the diff vector to get the output vector
233
            rotate_binormal(out, theta_h);
234
            rotate_normal(out, phi_h);
235 236 237 238

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
239 240 241
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
242

243 244 245
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
246
        }
247 248 249 250 251 252 253 254 255 256 257 258 259
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
260

261 262 263 264 265 266
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
267

268
			  const double temp = cost * vec[0] + sint * vec[1];
269

270 271 272
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
273

274 275 276 277 278 279
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
280

281
			  const double temp = cost * vec[0] + sint * vec[2];
282

283 284 285
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
286

287
		  static void print_input_params();
288

289
};
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
336 337
				std::cout << "<<ERROR>> changing to: " << params::get_name(new_param) << std::endl;
				_in_param = new_param;
338 339 340 341 342 343 344 345 346 347 348 349
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
350
            else if(_out_param == params::UNKNOWN_OUTPUT)
351 352 353 354 355 356 357 358 359
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
383
		virtual vec min() const ;
384 385

		//! \brief Get the maximum value the input can take
386
		virtual vec max() const ;
387 388


389 390 391 392
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
393 394 395 396

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
397
};