params.h 13.9 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12
#include "common.h"

13
/*! \class params
14
 *  \ingroup core
15 16
 *  \brief a static class allowing to change from one parametrization
 *  to another.
17
 *
18 19
 *  Any function object or data object should have an associated
 *  parametrization.
20 21 22 23 24 25
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
26 27 28
 */
class params
{
29
    public: // data
30

31 32
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
33 34 35 36 37
		 //! <em>unknown</em>. We use the following notations:
		 //!   * The view vector is \f$\vec{v}\f$
		 //!   * The light vector is \f$\vec{l}\f$
		 //!   * The normal vector is \f$\vec{n}\f$
		 //!   * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$
38 39
		 enum input
		 {
40 41 42 43
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
44 45 46 47 48 49
             RUSIN_VH_VD,           /*!< Half-angle parametrization in vector format. Coordinates are:
				                             [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, 
													  \vec{d}_z \f$].*/
             RUSIN_VH,              /*!< Half-angle parametrization with no difference direction in 
												     vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, 
													  \vec{h}_z\f$]. */
50 51 52
             COS_TH_TD,
             COS_TH,

53 54 55
             SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
             SCHLICK_VK,            /*!< Schlick's back vector */
             COS_TK,                /*!< Schlick's back vector dot product with the normal */
56

57 58 59
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
60 61
				 COS_TLV,               /*!< Dot product between the Light and View vector */
				 COS_TLR,               /*!< Dot product between the Light and Reflected vector */
62
             ISOTROPIC_TV_TL,       /*!< Light and View vectors represented in spherical coordinates, */
63 64
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
65 66 67
				 ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
				                             Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v 
													  \sin(\Delta\phi).\f$]*/
68 69 70
				 ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
				                                Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), 
														  \theta_v \sin(\Delta\phi).\f$]*/
71 72
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

73 74 75 76
				 BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et alL [2004].
				                               Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), 
														 (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */

77 78 79
             CARTESIAN,             /*!< View and Light vectors represented in cartesian coordinates.
				                             We always pack the view vector first: \f$\vec{c} = [v.x, v.y, 
													  v.z, l.x, l.y, l.z] \f$*/
80

81
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
82 83 84 85 86 87 88
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
89 90 91 92 93
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
94 95 96 97 98
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
99 100 101

    public: // methods

102
        //! \brief parse a string to provide a parametrization type.
103
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
104

105 106 107
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
108

109 110 111 112 113 114 115 116 117 118 119 120 121
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

122 123
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
124 125
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
126
        {
127 128 129 130 131
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
132
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
133 134 135 136 137 138 139 140 141 142 143
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

144 145
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
146
        //! output size.
147 148
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
149
        {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
			  if(intype == params::CARTESIAN)
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
178 179 180 181 182
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
183
        static void to_cartesian(const double* invec, params::input intype,
184
                                 double* outvec);
185 186 187

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
188
        static void from_cartesian(const double* invec, params::input outtype,
189
                                   double* outvec);
190 191

        //! \brief provide a dimension associated with a parametrization
192
        static int  dimension(params::input t);
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
212
                    assert(false);
213 214 215 216 217
                    return -1;
                    break;
            }
        }

218 219 220 221 222 223 224
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
225 226
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
227 228 229
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
230 231
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
232
            out[2] = cos(theta_d);
233

234
				// Rotate the diff vector to get the output vector
235
            rotate_binormal(out, theta_h);
236
            rotate_normal(out, phi_h);
237 238 239 240

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
241 242 243
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
244

245 246 247
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
248
        }
249 250 251 252 253 254 255 256 257 258 259 260 261
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
262

263 264 265 266 267 268
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
269

270
			  const double temp = cost * vec[0] + sint * vec[1];
271

272 273 274
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
275

276 277 278 279 280 281
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
282

283
			  const double temp = cost * vec[0] + sint * vec[2];
284

285 286 287
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
288

289
		  static void print_input_params();
290

291
};
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
338 339
				std::cout << "<<ERROR>> changing to: " << params::get_name(new_param) << std::endl;
				_in_param = new_param;
340 341 342 343 344 345 346 347 348 349 350 351
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
352
            else if(_out_param == params::UNKNOWN_OUTPUT)
353 354 355 356 357 358 359 360 361
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
385
		virtual vec min() const ;
386 387

		//! \brief Get the maximum value the input can take
388
		virtual vec max() const ;
389 390


391 392 393 394
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
395 396 397 398

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
399
};