params.h 11 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12 13 14 15 16 17 18 19 20
/*! \brief a static class allowing to change from one parametrization
 *  to another.
 *  \ingroup core
 *
 *  \details
 *  Any \typedef function object or \typedef data object should have
 *  an associated parametrization.
 */
class params
{
21
    public: // data
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
			 ROMEIRO_TH_TD,
			 RUSIN_TH_TD,
			 RUSIN_TH_PH_TD,
			 RUSIN_TH_TD_PD,
			 RUSIN_TH_PH_TD_PD,
			 COS_TH,
			 COS_TH_TD,
			 ISOTROPIC_TV_TL_DPHI,
			 ISOTROPIC_TD_PD, // Difference between two directions such as R and H
			 CARTESIAN,
			 SPHERICAL_TL_PL_TV_PV,
			 UNKNOWN_INPUT
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
53 54 55

    public: // methods

56
        //! \brief parse a string to provide a parametrization type.
57
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
58

59 60 61
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
62

63 64 65 66 67 68 69 70 71 72 73 74 75
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

76 77
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
78 79
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
80
        {
81 82 83 84 85
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
86
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
87 88 89 90 91 92 93 94 95 96 97
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

98 99
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
100
        //! output size.
101 102
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
103
        {
104
            double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
105
            to_cartesian(invec, intype, temvec);
106 107 108 109 110
#ifdef DEBUG
            std::cout << "<<DEBUG>> temp vec = ["
                      << temvec[0] << ", " << temvec[1] << ", " << temvec[2] << "] => ["
                      << temvec[3] << ", " << temvec[4] << ", " << temvec[5] << "]" << std::endl;
#endif
111 112 113 114 115 116
            from_cartesian(temvec, outtype, outvec);
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
117
        static void to_cartesian(const double* invec, params::input intype,
118 119 120 121
                                 double* outvec)
        {
            switch(intype)
            {
122 123
                // 1D Parametrizations
                case params::COS_TH:
124 125 126 127 128 129 130 131 132 133
#ifndef USE_HALF
						 half_to_cartesian(acos(invec[0]), 0.0, 0.0, 0.0, outvec);
#else
						 outvec[0] = sqrt(1.0 - invec[0]*invec[0]);
						 outvec[1] = 0;
						 outvec[2] = invec[0];							
						 outvec[3] = sqrt(1.0 - invec[0]*invec[0]);
						 outvec[4] = 0;
						 outvec[5] = invec[0];							
#endif
134 135
                    break;

136 137 138 139 140 141 142 143 144
                // 2D Parametrizations
                case params::COS_TH_TD:
                    half_to_cartesian(acos(invec[0]), 0.0, acos(invec[1]), 0.0, outvec);
                    break;

                case params::RUSIN_TH_TD:
                    half_to_cartesian(invec[0], 0.0, invec[1], 0.0, outvec);
                    break;

145 146
                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
147
                    half_to_cartesian(invec[0], invec[1], invec[2], 0.0, outvec);
148
                    break;
Laurent Belcour's avatar
Laurent Belcour committed
149 150 151
                case params::RUSIN_TH_TD_PD:
                    half_to_cartesian(invec[0], 0.0, invec[1], invec[2], outvec);
                    break;
152 153 154

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
155
                    half_to_cartesian(invec[0], invec[1], invec[2], invec[3], outvec);
156 157
                    break;

158 159 160 161 162 163 164 165
                case params::SPHERICAL_TL_PL_TV_PV:
                    outvec[0] = cos(invec[1])*sin(invec[0]);
                    outvec[1] = sin(invec[1])*sin(invec[0]);
						  outvec[2] = cos(invec[0]);
                    outvec[3] = cos(invec[3])*sin(invec[2]);
                    outvec[4] = sin(invec[3])*sin(invec[2]);
						  outvec[5] = cos(invec[2]);
                    break;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::to_cartesian");
                    break;
            }

        }

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
181
        static void from_cartesian(const double* invec, params::input outtype,
182 183 184 185 186 187 188 189 190 191 192
                                   double* outvec)
        {
            // Compute the half vector
            double half[3] ;
            half[0] = invec[0] + invec[3];
            half[1] = invec[1] + invec[4];
            half[2] = invec[2] + invec[5];
            double half_norm = sqrt(half[0]*half[0] + half[1]*half[1] + half[2]*half[2]);
            half[0] /= half_norm;
            half[1] /= half_norm;
            half[2] /= half_norm;
193 194 195
            
				// Difference vector 
				double diff[3];
196 197 198

            switch(outtype)
            {
199 200 201 202 203
                // 1D Parametrizations
                case params::COS_TH:
                    outvec[0] = half[2];
                    break;

204 205 206 207 208
                // 2D Parametrizations
                case params::COS_TH_TD:
                    outvec[0] = half[2];
                    outvec[1] = half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2];
                    break;
Laurent Belcour's avatar
Laurent Belcour committed
209 210 211 212
                case params::RUSIN_TH_TD:
                    outvec[0] = acos(half[2]);
                    outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]);
                    break;
213 214 215 216 217 218

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                    outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
                    outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                    break;
                
                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
						  outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
						  
						  // Compute the diff vector
						  diff[0] = invec[0];
						  diff[1] = invec[1];
						  diff[2] = invec[2];
						  rotate_normal(diff, -outvec[1]);
						  rotate_binormal(diff, -outvec[0]);

						  outvec[2] = acos(diff[2]);
						  outvec[3] = atan2(diff[0], diff[1]);
235 236
                    break;

237 238 239 240 241 242 243
					 case params::SPHERICAL_TL_PL_TV_PV:
						  outvec[0] = acos(invec[2]);
						  outvec[1] = atan2(invec[0], invec[1]);
						  outvec[2] = acos(invec[5]);
						  outvec[3] = atan2(invec[3], invec[4]);
						  break;

244 245 246 247 248 249
                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
250
                    assert(false);
251 252 253 254 255
                    break;
            }
        }

        //! \brief provide a dimension associated with a parametrization
256
        static int  dimension(params::input t);
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
276
                    assert(false);
277 278 279 280 281
                    return -1;
                    break;
            }
        }

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
            out[2] = cos(theta_d);
297 298 299 300 301

				//! \todo investigate here, the rotation along N should be
				//1 of phi_h not theta_h !
            rotate_normal(out, phi_h);
            rotate_binormal(out, theta_h);
302 303 304 305

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
306 307 308 309 310
            out[3] = -out[0] + (dot+1.0) * half[0];
            out[4] = -out[1] + (dot+1.0) * half[1];
            out[5] = -out[2] + (dot+1.0) * half[2];

				assert(out[5] >= 0.0);
311 312
        }

313
        //! \brief rotate a cartesian vector with respect to the normal of
314
        //! theta degrees.
315
        static void rotate_normal(double* vec, double theta)
316 317 318
        {
            const double cost = cos(theta);
            const double sint = sin(theta);
319 320 321

            vec[0] = cost * vec[0] - sint * vec[1];
            vec[1] = sint * vec[0] + cost * vec[1];
322 323
        }

324
        //! \brief rotate a cartesian vector with respect to the bi-normal of
325
        //! theta degrees.
326
        static void rotate_binormal(double* vec, double theta)
327 328 329 330
        {
            const double cost = cos(theta);
            const double sint = sin(theta);

331 332
            vec[0] = cost * vec[0] - sint * vec[2];
            vec[2] = sint * vec[0] + cost * vec[2];
333
        }
334

335
		  static void print_input_params();
336

337
};