params.h 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* ALTA --- Analysis of Bidirectional Reflectance Distribution Functions

   Copyright (C) 2014 CNRS
   Copyright (C) 2013, 2014 Inria

   This file is part of ALTA.

   This Source Code Form is subject to the terms of the Mozilla Public
   License, v. 2.0.  If a copy of the MPL was not distributed with this
   file, You can obtain one at http://mozilla.org/MPL/2.0/.  */

12 13
#pragma once

14 15 16 17 18 19 20 21
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

22 23
#include "common.h"

24
/*! \class params
25
 *  \ingroup core
26 27
 *  \brief a static class allowing to change from one parametrization
 *  to another.
28
 *
29 30
 *  Any function object or data object should have an associated
 *  parametrization.
31 32 33 34 35 36
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
37 38 39
 */
class params
{
40
    public: // data
41

42 43
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
44 45 46 47 48
		 //! <em>unknown</em>. We use the following notations:
		 //!   * The view vector is \f$\vec{v}\f$
		 //!   * The light vector is \f$\vec{l}\f$
		 //!   * The normal vector is \f$\vec{n}\f$
		 //!   * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$
49 50
		 enum input
		 {
51 52 53 54 55 56 57 58 59 60 61 62 63
       RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
       RUSIN_TH_PH_TD,
       RUSIN_TH_TD_PD,
       RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
       RUSIN_VH_VD,           /*!< Half-angle parametrization in vector format. Coordinates are:
                               [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, 
  									  \vec{d}_z \f$].*/
       RUSIN_VH,              /*!< Half-angle parametrization with no difference direction in 
  								     vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, 
  									  \vec{h}_z\f$]. */
       COS_TH_TD,      /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in 
                         $[\cos_\theta_h,\cos_\theta_d]$. */
       COS_TH,
64

65 66 67 68 69 70
       SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
       SCHLICK_VK,            /*!< Schlick's back vector */
       SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and
                              the parametrization is centered around the back direction.
  									 \f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/
       COS_TK,                /*!< Schlick's back vector dot product with the normal */
71

72

73 74 75 76
       RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and
                               the parametrization is centered around the retro direction
  									  \f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL} 
  									  \sin(\Delta\phi)]\f$.*/
77

78
       STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */
79

80

81 82 83 84 85 86 87 88 89 90 91 92 93
       SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
       COS_TLV,               /*!< Dot product between the Light and View vector */
       COS_TLR,               /*!< Dot product between the Light and Reflected vector */
       ISOTROPIC_TV_TL,       /*!< Light and View vectors represented in spherical coordinates, */
       ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                   with the difference of azimutal coordinates in the last component  */
       ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
                               Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v 
  									  \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
                                  Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), 
  										  \theta_v \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */
94

95
       BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined input Stark et al. [2004].
96 97
                                 Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), 
  										 (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */
98

99 100
        // Params goes from (-1,-1) to (1,1)
        STARK_2D,
101
        NEUMANN_2D,
102

103 104 105
       CARTESIAN,             /*!< View and Light vectors represented in cartesian coordinates.
                               We always pack the view vector first: \f$\vec{c} = [v.x, v.y, 
  									  v.z, l.x, l.y, l.z] \f$*/
106

107
       UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
108 109 110 111 112 113 114
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
115 116 117 118 119
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
120 121 122 123 124
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
125 126 127

    public: // methods

128
        //! \brief parse a string to provide a parametrization type.
129
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
130

131 132 133
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt);

134 135 136
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
137 138 139 140 141
		  
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  //! \todo Finish this implementation. It requires another static
		  //! object.
142
		  static std::string get_name(const params::output)
143 144 145
		  {
			  return std::string("UNKNOWN_OUTPUT");
		  }
Laurent Belcour's avatar
Laurent Belcour committed
146

147 148
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
149 150
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
151
        {
152 153 154 155 156
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
157
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
158 159 160 161 162 163 164 165 166 167 168
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

169 170 171
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
        //! output size.
172
        //! TODO:  RP this function is weird the outtype and intype ARE NEVER USED
173 174 175 176
        static void convert(const double* invec, params::output intype, int indim,
                            params::output outtype, int outdim, double* outvec)
        {
        	// The convertion is done using the cartesian parametrization as
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    			// an intermediate one. If the two parametrizations are equals
    			// there is no need to perform the conversion.
    			if(outdim == indim)
    			{
    				for(int i=0; i<outdim; ++i) { outvec[i] = invec[i]; }
    			}
    			// If the dimension of the output data is bigger than the 
    			// dimensions of the input domain, and the input domain is of
    			// dimension one, spread the data over all dimensions.
    			else if(indim == 1)
    			{
    				for(int i=0; i<outdim; ++i) { outvec[i] = invec[0]; }
    			}
    			// If the output dimension is one, compute the average of the
    			// input vector values.
    			else if(outdim == 1)
    			{
    				for(int i=0; i<indim; ++i) 
            { 
                outvec[0] += invec[i]; 
            }	
            outvec[0] /= static_cast<double>(indim);
    			}
    			else
    			{
    				NOT_IMPLEMENTED();
    			}
204 205
        }

206 207
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
208
        //! output size.
209 210
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
211
        {
212 213 214 215 216 217 218 219 220 221
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
222
			  else if(intype == params::CARTESIAN)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
240 241 242 243 244
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
245
        static void to_cartesian(const double* invec, params::input intype,
246
                                 double* outvec);
247 248 249

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
250
        static void from_cartesian(const double* invec, params::input outtype,
251
                                   double* outvec);
252 253

        //! \brief provide a dimension associated with a parametrization
254
        static int  dimension(params::input t);
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
274
                    assert(false);
275 276 277 278 279
                    return -1;
                    break;
            }
        }

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		  //! \brief Is the value stored weighted by a cosine factor
		  static bool is_cosine_weighted(params::output t)
		  {
			  switch(t)
			  {
				  case params::INV_STERADIAN_COSINE_FACTOR:
					  return true;
					  break;

				  case params::INV_STERADIAN:
				  case params::ENERGY:
				  case params::RGB_COLOR:
				  case params::XYZ_COLOR:
				  default:
					  return false;
					  break;
			  }
		  }

299 300 301 302 303 304 305
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
306 307
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
308 309 310
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
311 312
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
313
            out[2] = cos(theta_d);
314

315
				// Rotate the diff vector to get the output vector
316
            rotate_binormal(out, theta_h);
317
            rotate_normal(out, phi_h);
318 319 320 321

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
322 323 324
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
325

326 327 328
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
329
        }
330 331 332 333 334 335 336 337 338 339 340 341 342
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
343

344 345 346 347 348 349
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
350

351
			  const double temp = cost * vec[0] + sint * vec[1];
352

353 354 355
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
356

357 358 359 360 361 362
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
363

364
			  const double temp = cost * vec[0] + sint * vec[2];
365

366 367 368
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
369

370
		  static void print_input_params();
371

372
};
373 374 375 376 377 378 379 380

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    parametrized() 
      : _in_param(params::UNKNOWN_INPUT), 
        _out_param(params::UNKNOWN_OUTPUT),
        _nX( 0 ),
        _nY( 0 )
    { 
    }

    parametrized( unsigned int dim_X, unsigned int dim_Y)
    : _in_param(params::UNKNOWN_INPUT), 
      _out_param(params::UNKNOWN_OUTPUT),
      _nX( dim_X ),
      _nY( dim_Y ),
      _min( vec::Zero( _nX+_nY) ),
      _max( vec::Zero( _nX+_nY) )
    {}

		parametrized(params::input in_param, params::output out_param) 
    : _in_param( in_param ),
      _out_param( out_param ),
      _nX( params::dimension(_in_param) ),
      _nY( params::dimension(_out_param) ) ,
      _min( vec::Zero( _nX+_nY) ),
      _max( vec::Zero( _nX+_nY) )
    {
406
		}
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
443 444
				std::cout << "<<ERROR>> changing to: " << params::get_name(new_param) << std::endl;
				_in_param = new_param;
445 446 447 448 449 450 451 452 453 454 455 456
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
457
            else if(_out_param == params::UNKNOWN_OUTPUT)
458 459 460 461 462 463
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
464
			}      
465 466
		}

467 468 469 470 471 472
    //! \brief Set the input and output parametrizations directly
    virtual void setParametrizations(params::input new_in_param, params::output new_out_param)
    {
      setParametrization( new_in_param);
      setParametrization( new_out_param );
    }
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
496
		virtual vec min() const ;
497 498

		//! \brief Get the maximum value the input can take
499
		virtual vec max() const ;
500 501


502 503 504 505
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
506 507 508 509

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
510
};