params.h 16.1 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12
#include "common.h"

13
/*! \class params
14
 *  \ingroup core
15 16
 *  \brief a static class allowing to change from one parametrization
 *  to another.
17
 *
18 19
 *  Any function object or data object should have an associated
 *  parametrization.
20 21 22 23 24 25
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
26 27 28
 */
class params
{
29
    public: // data
30

31 32
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
33 34 35 36 37
		 //! <em>unknown</em>. We use the following notations:
		 //!   * The view vector is \f$\vec{v}\f$
		 //!   * The light vector is \f$\vec{l}\f$
		 //!   * The normal vector is \f$\vec{n}\f$
		 //!   * The reflected vector is \f$\vec{r} = 2\mbox{dot}(\vec{v}, \vec{n})\vec{n} - \vec{v}\f$
38 39
		 enum input
		 {
40 41 42 43 44 45 46 47 48 49 50 51 52
       RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
       RUSIN_TH_PH_TD,
       RUSIN_TH_TD_PD,
       RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
       RUSIN_VH_VD,           /*!< Half-angle parametrization in vector format. Coordinates are:
                               [\f$\vec{h}_x, \vec{h}_y, \vec{h}_z, \vec{d}_x, \vec{d}_y, 
  									  \vec{d}_z \f$].*/
       RUSIN_VH,              /*!< Half-angle parametrization with no difference direction in 
  								     vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, 
  									  \vec{h}_z\f$]. */
       COS_TH_TD,      /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in 
                         $[\cos_\theta_h,\cos_\theta_d]$. */
       COS_TH,
53

54 55 56 57 58 59
       SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
       SCHLICK_VK,            /*!< Schlick's back vector */
       SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and
                              the parametrization is centered around the back direction.
  									 \f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/
       COS_TK,                /*!< Schlick's back vector dot product with the normal */
60

61

62 63 64 65
       RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and
                               the parametrization is centered around the retro direction
  									  \f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL} 
  									  \sin(\Delta\phi)]\f$.*/
66

67
       STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */
68

69

70 71 72 73 74 75 76 77 78 79 80 81 82
       SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
       COS_TLV,               /*!< Dot product between the Light and View vector */
       COS_TLR,               /*!< Dot product between the Light and Reflected vector */
       ISOTROPIC_TV_TL,       /*!< Light and View vectors represented in spherical coordinates, */
       ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                   with the difference of azimutal coordinates in the last component  */
       ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
                               Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v 
  									  \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
                                  Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), 
  										  \theta_v \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */
83

84 85 86
       BARYCENTRIC_ALPHA_SIGMA, /*!< Barycentric parametrization defined in Stark et al. [2004].
                                 Coordinates are: \f$[\alpha, \sigma] = [{1\over 2}(1 - \vec{l}\vec{v}), 
  										 (1-(\vec{h}.\vec{n})^2)(1 - \alpha)]\f$ */
87

88 89 90
       CARTESIAN,             /*!< View and Light vectors represented in cartesian coordinates.
                               We always pack the view vector first: \f$\vec{c} = [v.x, v.y, 
  									  v.z, l.x, l.y, l.z] \f$*/
91

92
       UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
93 94 95 96 97 98 99
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
100 101 102 103 104
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
105 106 107 108 109
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
110 111 112

    public: // methods

113
        //! \brief parse a string to provide a parametrization type.
114
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
115

116 117 118
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt);

119 120 121
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
122 123 124 125 126
		  
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  //! \todo Finish this implementation. It requires another static
		  //! object.
127
		  static std::string get_name(const params::output)
128 129 130
		  {
			  return std::string("UNKNOWN_OUTPUT");
		  }
Laurent Belcour's avatar
Laurent Belcour committed
131

132 133
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
134 135
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
136
        {
137 138 139 140 141
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
142
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
143 144 145 146 147 148 149 150 151 152 153
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
        //! output size.
        static void convert(const double* invec, params::output intype, int indim,
                            params::output outtype, int outdim, double* outvec)
        {
        	// The convertion is done using the cartesian parametrization as
			// an intermediate one. If the two parametrizations are equals
			// there is no need to perform the conversion.
			if(outdim == indim)
			{
				for(int i=0; i<outdim; ++i) { outvec[i] = invec[i]; }
			}
			// If the dimension of the output data is bigger than the 
			// dimensions of the input domain, and the input domain is of
			// dimension one, spread the data over all dimensions.
			else if(indim == 1)
			{
				for(int i=0; i<outdim; ++i) { outvec[i] = invec[0]; }
			}
			// If the output dimension is one, compute the average of the
			// input vector values.
			else if(outdim == 1)
			{
				for(int i=0; i<indim; ++i) { outvec[0] = invec[i]; }	
			}
			else
			{
				NOT_IMPLEMENTED();
			}
        }

186 187
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
188
        //! output size.
189 190
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
191
        {
192 193 194 195 196 197 198 199 200 201
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
202
			  else if(intype == params::CARTESIAN)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
220 221 222 223 224
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
225
        static void to_cartesian(const double* invec, params::input intype,
226
                                 double* outvec);
227 228 229

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
230
        static void from_cartesian(const double* invec, params::input outtype,
231
                                   double* outvec);
232 233

        //! \brief provide a dimension associated with a parametrization
234
        static int  dimension(params::input t);
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
254
                    assert(false);
255 256 257 258 259
                    return -1;
                    break;
            }
        }

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		  //! \brief Is the value stored weighted by a cosine factor
		  static bool is_cosine_weighted(params::output t)
		  {
			  switch(t)
			  {
				  case params::INV_STERADIAN_COSINE_FACTOR:
					  return true;
					  break;

				  case params::INV_STERADIAN:
				  case params::ENERGY:
				  case params::RGB_COLOR:
				  case params::XYZ_COLOR:
				  default:
					  return false;
					  break;
			  }
		  }

279 280 281 282 283 284 285
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
286 287
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
288 289 290
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
291 292
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
293
            out[2] = cos(theta_d);
294

295
				// Rotate the diff vector to get the output vector
296
            rotate_binormal(out, theta_h);
297
            rotate_normal(out, phi_h);
298 299 300 301

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
302 303 304
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
305

306 307 308
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
309
        }
310 311 312 313 314 315 316 317 318 319 320 321 322
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
323

324 325 326 327 328 329
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
330

331
			  const double temp = cost * vec[0] + sint * vec[1];
332

333 334 335
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
336

337 338 339 340 341 342
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
343

344
			  const double temp = cost * vec[0] + sint * vec[2];
345

346 347 348
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
349

350
		  static void print_input_params();
351

352
};
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
399 400
				std::cout << "<<ERROR>> changing to: " << params::get_name(new_param) << std::endl;
				_in_param = new_param;
401 402 403 404 405 406 407 408 409 410 411 412
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
413
            else if(_out_param == params::UNKNOWN_OUTPUT)
414 415 416 417 418 419 420 421 422
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
446
		virtual vec min() const ;
447 448

		//! \brief Get the maximum value the input can take
449
		virtual vec max() const ;
450 451


452 453 454 455
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
456 457 458 459

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
460
};