params.h 18.8 KB
Newer Older
1 2 3
/* ALTA --- Analysis of Bidirectional Reflectance Distribution Functions

   Copyright (C) 2014 CNRS
4
   Copyright (C) 2013, 2014, 2015 Inria
5 6 7 8 9 10 11

   This file is part of ALTA.

   This Source Code Form is subject to the terms of the Mozilla Public
   License, v. 2.0.  If a copy of the MPL was not distributed with this
   file, You can obtain one at http://mozilla.org/MPL/2.0/.  */

12 13
#pragma once

14 15 16 17 18 19 20 21
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

22 23
#include "common.h"

24
/*! \class params
25
 *  \ingroup core
26 27
 *  \brief a static class allowing to change from one parametrization
 *  to another.
28
 *
29 30
 *  Any function object or data object should have an associated
 *  parametrization.
31 32 33 34 35 36
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
37 38 39
 */
class params
{
40
    public: // data
41

42
		 //! \brief list of all supported parametrization for the input space.
43 44 45 46 47 48 49 50 51 52
		 //! An unsupported parametrization will go under the name ! *unknown*. We
		 //!use the following notations:
		 //!   * The View vector is \f$V\f$
		 //!   * The Light vector is \f$L\f$
		 //!   * The Normal vector is \f$N\f$
		 //!   * The Reflected vector is \f$R = 2\mbox{dot}(\vec{V}, \vec{N})\vec{N} - \vec{V}\f$
		 //!   * The Half vector is \f$H = \frac{V+L}{||V+L||}\f$
		 //!   * The Back vector is \f$K = \frac{V-L}{||V-L||}\f$
		 //!   * The elevation angle of vector \f$V\f$ is \f$\theta_V\f$
		 //!   * The azimuth angle of vector \f$V\f$ is \f$\phi_V\f$
53 54
		 enum input
		 {
55
       RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described by Rusinkiewicz [1998] */
56 57 58 59
       RUSIN_TH_PH_TD,
       RUSIN_TH_TD_PD,
       RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
       RUSIN_VH_VD,           /*!< Half-angle parametrization in vector format. Coordinates are:
60
                                   \f$ [H_x, H_y, H_z, D_x, D_y, D_z] \f$.*/
61
       RUSIN_VH,              /*!< Half-angle parametrization with no difference direction in 
62 63 64 65
  								           vector format. Coordinates are: [\f$\vec{h}_x, \vec{h}_y, 
  									        \vec{h}_z\f$]. */
       COS_TH_TD,             /*!< Cosine of the RUSIN_TH_TD parametrization: Coordinates are in 
                                   \f$ [\cos_{\theta_H},\cos_{\theta_D}] \f$. */
66
       COS_TH,
67

68 69 70 71 72 73
       SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
       SCHLICK_VK,            /*!< Schlick's back vector */
       SCHLICK_TL_TK_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected and
                              the parametrization is centered around the back direction.
  									 \f$[\theta_L, x, y] = [\theta_L, \theta_K \cos(\phi_K), \theta_K \sin(\phi_K)]\f$*/
       COS_TK,                /*!< Schlick's back vector dot product with the normal */
74

75

76 77 78 79
       RETRO_TL_TVL_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected and
                               the parametrization is centered around the retro direction
  									  \f$[x, y] = [\theta_{VL} \cos(\Delta\phi), \theta_{VL} 
  									  \sin(\Delta\phi)]\f$.*/
80

81
       STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */
82

83

84 85 86 87 88 89 90 91 92 93 94 95 96
       SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
       COS_TLV,               /*!< Dot product between the Light and View vector */
       COS_TLR,               /*!< Dot product between the Light and Reflected vector */
       ISOTROPIC_TV_TL,       /*!< Light and View vectors represented in spherical coordinates, */
       ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                   with the difference of azimutal coordinates in the last component  */
       ISOTROPIC_TV_PROJ_DPHI,/*!< 2D Parametrization where the phi component is projected.
                               Coordinates are: [\f$\theta_v \cos(\Delta\phi), \theta_v 
  									  \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TL_TV_PROJ_DPHI,/*!< 3D Parametrization where the phi component is projected.
                                  Coordinates are: [\f$\theta_l, \theta_v \cos(\Delta\phi), 
  										  \theta_v \sin(\Delta\phi).\f$]*/
       ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */
97

98 99 100 101 102 103
        STARK_2D,             /*!< Modified Stark et al. 2D parametrization. This parametrization
		                             is defined by the couple \f$ \vec{x} = ||\tilde{H}_p||, 
											  ||\tilde{B}|| \f$, where \f$ \tilde{H} = \frac{1}{2}(L+V) \f$
											  and \f$ \tilde{B} = \frac{1}{2}(L-V) \f$. \f$ \tilde{H}_p \f$
											  is the projected coordinates of \f$ \tilde{H} \f$ on the
											  tanget plane. */
104 105 106 107 108 109 110 111 112 113 114 115 116
        NEUMANN_2D,           /*!< Neumann and Neumann [1996] parametrization. This parametrization
		                             is defined by the couple \f$ \vec{x} = ||\tilde{H}_p||, 
											  ||\tilde{B}_p|| \f$, where \f$ \tilde{H} = \frac{1}{2}(L+V) \f$
											  and \f$ \tilde{B} = \frac{1}{2}(L-V) \f$. \f$ \tilde{H}_p \f$
											  is the projected coordinates of \f$ \tilde{H} \f$ on the
											  tanget plane.*/

        STARK_3D,             /*!< Modified Stark et al. 2D parametrization. This parametrization
		                             is defined by the tuple \f$ \vec{x} = ||\tilde{H}_p||, 
											  ||\tilde{B}||, \phi_B-\phi_H \f$. */
        NEUMANN_3D,           /*!< Neumann and Neumann [1996] 3D parametrization. This parametrization
		                             is defined by the tuple \f$ \vec{x} = ||\tilde{H}_p||, 
											  ||\tilde{B}_p||, \phi_B-\phi_H \f$.*/
117
       CARTESIAN,             /*!< View and Light vectors represented in cartesian coordinates.
118 119
                               We always pack the view vector first: \f$[V.x, V.y, 
  									  V.z, L.x, L.y, L.z] \f$*/
120

121
       UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
122 123 124 125 126 127 128
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
129 130 131 132 133
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
134 135 136 137 138
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
139 140 141

    public: // methods

142
        //! \brief parse a string to provide a parametrization type.
143
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
144

145 146 147
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt);

148 149
		  //! \brief look for the string associated with a parametrization
		  //! type.
150 151
		  static const std::string& get_name(const params::input param);

152 153 154 155
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  //! \todo Finish this implementation. It requires another static
		  //! object.
156
		  static const std::string& get_name(const params::output);
Laurent Belcour's avatar
Laurent Belcour committed
157

158 159
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
160 161
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
162
        {
163 164 165 166 167
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
168
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
169 170 171 172 173 174 175 176 177 178 179
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

180 181 182
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
        //! output size.
183
        //! TODO:  RP this function is weird the outtype and intype ARE NEVER USED
184 185 186 187
        static void convert(const double* invec, params::output intype, int indim,
                            params::output outtype, int outdim, double* outvec)
        {
        	// The convertion is done using the cartesian parametrization as
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    			// an intermediate one. If the two parametrizations are equals
    			// there is no need to perform the conversion.
    			if(outdim == indim)
    			{
    				for(int i=0; i<outdim; ++i) { outvec[i] = invec[i]; }
    			}
    			// If the dimension of the output data is bigger than the 
    			// dimensions of the input domain, and the input domain is of
    			// dimension one, spread the data over all dimensions.
    			else if(indim == 1)
    			{
    				for(int i=0; i<outdim; ++i) { outvec[i] = invec[0]; }
    			}
    			// If the output dimension is one, compute the average of the
    			// input vector values.
    			else if(outdim == 1)
    			{
    				for(int i=0; i<indim; ++i) 
            { 
                outvec[0] += invec[i]; 
            }	
            outvec[0] /= static_cast<double>(indim);
    			}
    			else
    			{
    				NOT_IMPLEMENTED();
    			}
215 216
        }

217 218
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
219
        //! output size.
220 221
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
222
        {
223 224 225 226 227 228 229 230 231 232
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
233
			  else if(intype == params::CARTESIAN)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
251 252 253 254 255
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
256
        static void to_cartesian(const double* invec, params::input intype,
257
                                 double* outvec);
258 259 260

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
261
        static void from_cartesian(const double* invec, params::input outtype,
262
                                   double* outvec);
263 264

        //! \brief provide a dimension associated with a parametrization
265
        static int  dimension(params::input t);
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
285
                    assert(false);
286 287 288 289 290
                    return -1;
                    break;
            }
        }

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
		  //! \brief Is the value stored weighted by a cosine factor
		  static bool is_cosine_weighted(params::output t)
		  {
			  switch(t)
			  {
				  case params::INV_STERADIAN_COSINE_FACTOR:
					  return true;
					  break;

				  case params::INV_STERADIAN:
				  case params::ENERGY:
				  case params::RGB_COLOR:
				  case params::XYZ_COLOR:
				  default:
					  return false;
					  break;
			  }
		  }

310 311 312 313 314 315 316
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
317 318
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
319 320 321
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
322 323
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
324
            out[2] = cos(theta_d);
325

326
				// Rotate the diff vector to get the output vector
327
            rotate_binormal(out, theta_h);
328
            rotate_normal(out, phi_h);
329 330 331 332

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
333 334 335
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
336

337 338 339
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
340
        }
341 342 343 344 345 346 347 348 349 350 351 352 353
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
354

355 356 357 358 359 360
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
361

362
			  const double temp = cost * vec[0] - sint * vec[1];
363

364
			  vec[1] = cost * vec[1] + sint * vec[0];
365 366
			  vec[0] = temp;
		  }
367

368 369 370 371 372 373
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
374

375
			  const double temp = cost * vec[0] + sint * vec[2];
376

377 378 379
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
380

381
		  static void print_input_params();
382

383
};
384 385 386 387 388 389 390 391

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    parametrized() 
      : _in_param(params::UNKNOWN_INPUT), 
        _out_param(params::UNKNOWN_OUTPUT),
        _nX( 0 ),
        _nY( 0 )
    { 
    }

    parametrized( unsigned int dim_X, unsigned int dim_Y)
    : _in_param(params::UNKNOWN_INPUT), 
      _out_param(params::UNKNOWN_OUTPUT),
      _nX( dim_X ),
      _nY( dim_Y ),
      _min( vec::Zero( _nX+_nY) ),
      _max( vec::Zero( _nX+_nY) )
    {}

		parametrized(params::input in_param, params::output out_param) 
    : _in_param( in_param ),
      _out_param( out_param ),
      _nX( params::dimension(_in_param) ),
      _nY( params::dimension(_out_param) ) ,
      _min( vec::Zero( _nX+_nY) ),
      _max( vec::Zero( _nX+_nY) )
    {
417
		}
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
454 455
				std::cout << "<<ERROR>> changing to: " << params::get_name(new_param) << std::endl;
				_in_param = new_param;
456 457 458 459 460 461 462 463 464 465 466 467
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
468
            else if(_out_param == params::UNKNOWN_OUTPUT)
469 470 471 472 473 474
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
475
			}      
476 477
		}

478 479 480 481 482 483
    //! \brief Set the input and output parametrizations directly
    virtual void setParametrizations(params::input new_in_param, params::output new_out_param)
    {
      setParametrization( new_in_param);
      setParametrization( new_out_param );
    }
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
507
		virtual vec min() const ;
508 509

		//! \brief Get the maximum value the input can take
510
		virtual vec max() const ;
511 512


513 514 515 516
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
517 518 519 520

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
521
};