params.h 12.4 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12
#include "common.h"

13
/*! \class params
14
 *  \ingroup core
15 16
 *  \brief a static class allowing to change from one parametrization
 *  to another.
17
 *
18 19
 *  Any function object or data object should have an associated
 *  parametrization.
20 21 22 23 24 25
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
26 27 28
 */
class params
{
29
    public: // data
30

31 32 33 34 35
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
36 37 38 39
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
40 41 42 43
             RUSIN_VH_VD,           /*!< Half-angle parametrization with no azimutal information in
				                             vector format */
             RUSIN_VH,              /*!< Half-angle parametrization with no azimutal information
				                             and no difference direction in vector format */
44 45 46
             COS_TH_TD,
             COS_TH,

47 48 49
             SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
             SCHLICK_VK,            /*!< Schlick's back vector */
             COS_TK,                /*!< Schlick's back vector dot product with the normal */
50

51 52 53 54 55 56 57 58 59
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

             CARTESIAN,             /*!< Light and View vectors represented in cartesian coordinates */

60
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
61 62 63 64 65 66 67
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
68 69 70 71 72
			 INV_STERADIAN,                /*!< Output values in inverse steradian (sr-1). 
														   This is the standard definition for a BRDF. */
			 INV_STERADIAN_COSINE_FACTOR,  /*!< Output values in inverse steradian (sr-1)
			                                    weighted by the cosine factor of the output
															direction. */
73 74 75 76 77
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
78 79 80

    public: // methods

81
        //! \brief parse a string to provide a parametrization type.
82
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
83

84 85 86
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
87

88 89 90 91 92 93 94 95 96 97 98 99 100
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

101 102
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
103 104
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
105
        {
106 107 108 109 110
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
111
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
112 113 114 115 116 117 118 119 120 121 122
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

123 124
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
125
        //! output size.
126 127
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
128
        {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
			  if(intype == params::CARTESIAN)
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
157 158 159 160 161
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
162
        static void to_cartesian(const double* invec, params::input intype,
163
                                 double* outvec);
164 165 166

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
167
        static void from_cartesian(const double* invec, params::input outtype,
168
                                   double* outvec);
169 170

        //! \brief provide a dimension associated with a parametrization
171
        static int  dimension(params::input t);
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
191
                    assert(false);
192 193 194 195 196
                    return -1;
                    break;
            }
        }

197 198 199 200 201 202 203
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
204 205
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
206 207 208
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
209 210
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
211
            out[2] = cos(theta_d);
212

213
				// Rotate the diff vector to get the output vector
214
            rotate_binormal(out, theta_h);
215
            rotate_normal(out, phi_h);
216 217 218 219

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
220 221 222
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
223

224 225 226
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
227
        }
228 229 230 231 232 233 234 235 236 237 238 239 240
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
241

242 243 244 245 246 247
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
248

249
			  const double temp = cost * vec[0] + sint * vec[1];
250

251 252 253
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
254

255 256 257 258 259 260
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
261

262
			  const double temp = cost * vec[0] + sint * vec[2];
263

264 265 266
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
267

268
		  static void print_input_params();
269

270
};
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
				std::cout << "<<ERROR>> trying to change to: " << params::get_name(new_param) << std::endl;
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
330
            else if(_out_param == params::UNKNOWN_OUTPUT)
331 332 333 334 335 336 337 338 339
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

		/* DIMENSION OF THE INPUT AND OUTPUT DOMAIN */

		//! Provide the dimension of the input space of the function
		virtual int dimX() const { return _nX ; }
		//! Provide the dimension of the output space of the function
		virtual int dimY() const { return _nY ; }

		//! Set the dimension of the input space of the function
		virtual void setDimX(int nX) { _nX = nX ; }
		//! Set the dimension of the output space of the function
		virtual void setDimY(int nY) { _nY = nY ; }


		/* DEFINITION DOMAIN OF THE FUNCTION */

		//! \brief Set the minimum value the input can take
		virtual void setMin(const vec& min) ;

		//! \brief Set the maximum value the input can take
		virtual void setMax(const vec& max) ;

		//! \brief Get the minimum value the input can take
		virtual vec getMin() const ;

		//! \brief Get the maximum value the input can take
		virtual vec getMax() const ;


369 370 371 372
	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
373 374 375 376

		// Dimension of the function & domain of definition.
		int _nX, _nY ;
		vec _min, _max ;
377
};