Attention une mise à jour du serveur va être effectuée le vendredi 16 avril entre 12h et 12h30. Cette mise à jour va générer une interruption du service de quelques minutes.

data.cpp 11 KB
Newer Older
Laurent Belcour's avatar
Laurent Belcour committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright 2005 Mitsubishi Electric Research Laboratories All Rights Reserved.

// Permission to use, copy and modify this software and its documentation without
// fee for educational, research and non-profit purposes, is hereby granted, provided
// that the above copyright notice and the following three paragraphs appear in all copies.

// To request permission to incorporate this software into commercial products contact:
// Vice President of Marketing and Business Development;
// Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139 or 
// <license@merl.com>.

// IN NO EVENT SHALL MERL BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
// OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
// ITS DOCUMENTATION, EVEN IF MERL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

// MERL SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED
// HEREUNDER IS ON AN "AS IS" BASIS, AND MERL HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
// UPDATES, ENHANCEMENTS OR MODIFICATIONS.

#include "data.h"

#include <cstdio>
#include <cstdlib>
#include <cmath>

#define BRDF_SAMPLING_RES_THETA_H       90
#define BRDF_SAMPLING_RES_THETA_D       90
#define BRDF_SAMPLING_RES_PHI_D         360

#define RED_SCALE (1.0/1500.0)
#define GREEN_SCALE (1.15/1500.0)
#define BLUE_SCALE (1.66/1500.0)
#ifdef WIN32
#define M_PI	3.1415926535897932384626433832795
#endif
37 38 39 40 41

data_merl::data_merl()
{
	const int n = BRDF_SAMPLING_RES_PHI_D/2 * BRDF_SAMPLING_RES_THETA_D * BRDF_SAMPLING_RES_THETA_H;
	brdf = (double*) malloc (sizeof(double)*3*n);
42 43 44 45 46 47

    // Set the input and output parametrization
    _in_param  = params::RUSIN_TH_TD_PD;
    _out_param = params::RGB_COLOR;
    _nX = 3;
    _nY = 3;
48 49
}

Laurent Belcour's avatar
Laurent Belcour committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// cross product of two vectors
void cross_product (double* v1, double* v2, double* out)
{
	out[0] = v1[1]*v2[2] - v1[2]*v2[1];
	out[1] = v1[2]*v2[0] - v1[0]*v2[2];
	out[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

// normalize vector
void normalize(double* v)
{
	// normalize
	double len = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
	v[0] = v[0] / len;
	v[1] = v[1] / len;
	v[2] = v[2] / len;
}

// rotate vector along one axis
void rotate_vector(double* vector, double* axis, double angle, double* out)
{
	double temp;
	double cross[3];
	double cos_ang = cos(angle);
	double sin_ang = sin(angle);

	out[0] = vector[0] * cos_ang;
	out[1] = vector[1] * cos_ang;
	out[2] = vector[2] * cos_ang;

	temp = axis[0]*vector[0]+axis[1]*vector[1]+axis[2]*vector[2];
	temp = temp*(1.0-cos_ang);

	out[0] += axis[0] * temp;
	out[1] += axis[1] * temp;
	out[2] += axis[2] * temp;

	cross_product (axis,vector,cross);
	
	out[0] += cross[0] * sin_ang;
	out[1] += cross[1] * sin_ang;
	out[2] += cross[2] * sin_ang;
}


// convert standard coordinates to half vector/difference vector coordinates
void std_coords_to_half_diff_coords(double theta_in, double fi_in, double theta_out, double fi_out,
								double& theta_half,double& fi_half,double& theta_diff,double& fi_diff )
{

	// compute in vector
	double in_vec_z = cos(theta_in);
	double proj_in_vec = sin(theta_in);
	double in_vec_x = proj_in_vec*cos(fi_in);
	double in_vec_y = proj_in_vec*sin(fi_in);
	double in[3]= {in_vec_x,in_vec_y,in_vec_z};
	normalize(in);


	// compute out vector
	double out_vec_z = cos(theta_out);
	double proj_out_vec = sin(theta_out);
	double out_vec_x = proj_out_vec*cos(fi_out);
	double out_vec_y = proj_out_vec*sin(fi_out);
	double out[3]= {out_vec_x,out_vec_y,out_vec_z};
	normalize(out);


	// compute halfway vector
	double half_x = (in_vec_x + out_vec_x)/2.0f;
	double half_y = (in_vec_y + out_vec_y)/2.0f;
	double half_z = (in_vec_z + out_vec_z)/2.0f;
	double half[3] = {half_x,half_y,half_z};
	normalize(half);

	// compute  theta_half, fi_half
	theta_half = acos(half[2]);
	fi_half = atan2(half[1], half[0]);


	double bi_normal[3] = {0.0, 1.0, 0.0};
	double normal[3] = { 0.0, 0.0, 1.0 };
	double temp[3];
	double diff[3];

	// compute diff vector
	rotate_vector(in, normal , -fi_half, temp);
	rotate_vector(temp, bi_normal, -theta_half, diff);
	
	// compute  theta_diff, fi_diff	
	theta_diff = acos(diff[2]);
	fi_diff = atan2(diff[1], diff[0]);

}


// Lookup theta_half index
// This is a non-linear mapping!
// In:  [0 .. pi/2]
// Out: [0 .. 89]
inline int theta_half_index(double theta_half)
{
	if (theta_half <= 0.0)
		return 0;
	double theta_half_deg = ((theta_half / (M_PI/2.0))*BRDF_SAMPLING_RES_THETA_H);
	double temp = theta_half_deg*BRDF_SAMPLING_RES_THETA_H;
	temp = sqrt(temp);
	int ret_val = (int)temp;
	if (ret_val < 0) ret_val = 0;
	if (ret_val >= BRDF_SAMPLING_RES_THETA_H)
		ret_val = BRDF_SAMPLING_RES_THETA_H-1;
	return ret_val;
}

164 165 166 167 168 169 170 171 172 173 174 175
// Lookup theta_half from index
// This is a non-linear mapping!
// In:  [0 .. 89]
// Out: [0 .. pi/2]
inline double theta_half_from_index(int index)
{
	if(index > 89) return 0.5*M_PI;
	const double temp = double(index*index);
	const double theta_half_deg = temp / double(BRDF_SAMPLING_RES_THETA_H);
	const double ret_val = theta_half_deg * (0.5*M_PI) / double(BRDF_SAMPLING_RES_THETA_H);
	return ret_val;
}
Laurent Belcour's avatar
Laurent Belcour committed
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

// Lookup theta_diff index
// In:  [0 .. pi/2]
// Out: [0 .. 89]
inline int theta_diff_index(double theta_diff)
{
	int tmp = int(theta_diff / (M_PI * 0.5) * BRDF_SAMPLING_RES_THETA_D);
	if (tmp < 0)
		return 0;
	else if (tmp < BRDF_SAMPLING_RES_THETA_D - 1)
		return tmp;
	else
		return BRDF_SAMPLING_RES_THETA_D - 1;
}

191 192 193 194 195 196 197 198 199 200 201
// Lookup theta_diff from index
// In:  [0 .. 89]
// Out: [0 .. pi/2]
inline double theta_diff_from_index(int index)
{
	if(index > 89) return 0.5*M_PI;
	const double temp = double(index);
	const double theta_diff = temp * (0.5*M_PI) / double(BRDF_SAMPLING_RES_THETA_D);
	return theta_diff;
}

Laurent Belcour's avatar
Laurent Belcour committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

// Lookup phi_diff index
inline int phi_diff_index(double phi_diff)
{
	// Because of reciprocity, the BRDF is unchanged under
	// phi_diff -> phi_diff + M_PI
	if (phi_diff < 0.0)
		phi_diff += M_PI;

	// In: phi_diff in [0 .. pi]
	// Out: tmp in [0 .. 179]
	int tmp = int(phi_diff / M_PI * BRDF_SAMPLING_RES_PHI_D / 2);
	if (tmp < 0)	
		return 0;
	else if (tmp < BRDF_SAMPLING_RES_PHI_D / 2 - 1)
		return tmp;
	else
		return BRDF_SAMPLING_RES_PHI_D / 2 - 1;
}

222 223 224 225 226 227 228 229 230
// Lookup phi_diff from index
//
inline double phi_diff_from_index(int index)
{
	const double temp = double(index);
	const double theta_diff = temp * M_PI / double(BRDF_SAMPLING_RES_THETA_D/2);
	return theta_diff;
}

Laurent Belcour's avatar
Laurent Belcour committed
231 232

// Given a pair of incoming/outgoing angles, look up the BRDF.
233 234
void lookup_brdf_val(double* brdf, double theta_half,
			  double theta_diff, double fi_diff, 
Laurent Belcour's avatar
Laurent Belcour committed
235 236
			  double& red_val,double& green_val,double& blue_val)
{
Laurent Belcour's avatar
Laurent Belcour committed
237
	
238
    // Testing the input domain
Laurent Belcour's avatar
Laurent Belcour committed
239 240 241 242
	if(theta_half < 0.0 || theta_half > 0.5*M_PI || 
	   theta_diff < 0.0 || theta_diff > 0.5*M_PI ||
	   fi_diff > M_PI)
	{
243
        std::cerr << "<<ERROR>> the input vec is incorrect: TH = " << theta_half << ", TD = " << theta_diff << ", PD = " << fi_diff << std::endl;
Laurent Belcour's avatar
Laurent Belcour committed
244 245
		throw; //! \todo Add exception list
	}
Laurent Belcour's avatar
Laurent Belcour committed
246 247 248 249 250 251 252 253 254 255 256
	// Find index.
	// Note that phi_half is ignored, since isotropic BRDFs are assumed
	int ind = phi_diff_index(fi_diff) +
		  theta_diff_index(theta_diff) * BRDF_SAMPLING_RES_PHI_D / 2 +
		  theta_half_index(theta_half) * BRDF_SAMPLING_RES_PHI_D / 2 *
					         BRDF_SAMPLING_RES_THETA_D;

	red_val = brdf[ind] * RED_SCALE;
	green_val = brdf[ind + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] * GREEN_SCALE;
	blue_val = brdf[ind + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] * BLUE_SCALE;

Laurent Belcour's avatar
Laurent Belcour committed
257
#ifdef DEBUG
Laurent Belcour's avatar
Laurent Belcour committed
258
	if (red_val < 0.0 || green_val < 0.0 || blue_val < 0.0)
259
        fprintf(stderr, "Negative value [%f, %f, %f].\n", theta_half, theta_diff, fi_diff);
Laurent Belcour's avatar
Laurent Belcour committed
260
#endif
Laurent Belcour's avatar
Laurent Belcour committed
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

// Read BRDF data
bool read_brdf(const char *filename, double* &brdf)
{
	FILE *f = fopen(filename, "rb");
	if (!f)
		return false;

	int dims[3];
	fread(dims, sizeof(int), 3, f);
	int n = dims[0] * dims[1] * dims[2];
	if (n != BRDF_SAMPLING_RES_THETA_H *
		 BRDF_SAMPLING_RES_THETA_D *
		 BRDF_SAMPLING_RES_PHI_D / 2) 
	{
		fprintf(stderr, "Dimensions don't match\n");
		fclose(f);
		return false;
	}

	fread(brdf, sizeof(double), 3*n, f);

	fclose(f);
	return true;
}


// Load data from a file
void data_merl::load(const std::string& filename) 
{
	if(!read_brdf(filename.c_str(), brdf))
	{
		std::cerr << "<<ERROR>> unable to load the data as a MERL file" << std::endl ;
		throw;
	}
}
void data_merl::load(const std::string& filename, const arguments& args)
{
	if(!read_brdf(filename.c_str(), brdf))
	{
		std::cerr << "<<ERROR>> unable to load the data as a MERL file" << std::endl ;
		throw;
	}
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
void data_merl::save(const std::string& filename) const 
{
	FILE *f = fopen(filename.c_str(), "wb");

	int dims[3];
	dims[0] = BRDF_SAMPLING_RES_PHI_D/2;
	dims[1] = BRDF_SAMPLING_RES_THETA_D;
	dims[2] = BRDF_SAMPLING_RES_THETA_H;

	const int n = dims[0]*dims[1]*dims[2];

	fwrite(dims, sizeof(int), 3, f);
	fwrite(brdf, sizeof(double), 3*n, f);

	fclose(f);
}

Laurent Belcour's avatar
Laurent Belcour committed
324
// Acces to data
325
vec data_merl::get(int i) const 
Laurent Belcour's avatar
Laurent Belcour committed
326
{
327
	int phid_ind = i % (BRDF_SAMPLING_RES_PHI_D / 2);
Laurent Belcour's avatar
Laurent Belcour committed
328 329 330 331
	int thed_ind = (i / (BRDF_SAMPLING_RES_PHI_D / 2)) % BRDF_SAMPLING_RES_THETA_D ;
	int theh_ind = (i / (BRDF_SAMPLING_RES_PHI_D / 2 * BRDF_SAMPLING_RES_THETA_D)) 
		            % BRDF_SAMPLING_RES_THETA_H ;

332

Laurent Belcour's avatar
Laurent Belcour committed
333
	vec res(6) ;
334 335 336
	res[2] = phi_diff_from_index(phid_ind);
	res[1] = theta_diff_from_index(thed_ind);
	res[0] = theta_half_from_index(theh_ind);
Laurent Belcour's avatar
Laurent Belcour committed
337 338 339
	res[3] = brdf[i] * RED_SCALE;
	res[4] = brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] * GREEN_SCALE;
	res[5] = brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] * BLUE_SCALE;
340
	return res ;
Laurent Belcour's avatar
Laurent Belcour committed
341
}
342
vec data_merl::operator[](int i) const 
Laurent Belcour's avatar
Laurent Belcour committed
343 344 345
{
	return get(i) ;
}
346 347 348 349 350

//! \todo Test this function
void data_merl::set(vec x)
{
	assert(x.size() == 6);
351 352 353
	const int phid_ind = phi_diff_index(x[2]);
	const int thed_ind = theta_diff_index(x[1]);
	const int theh_ind = theta_half_index(x[0]);
354 355 356 357 358 359 360

	const int i = (theh_ind*BRDF_SAMPLING_RES_THETA_D + thed_ind)*(BRDF_SAMPLING_RES_PHI_D/2) + phid_ind;
	brdf[i] = x[3] / RED_SCALE;
	brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] = x[4] / GREEN_SCALE;
	brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] = x[5] / BLUE_SCALE;
}

361 362 363
vec data_merl::value(vec in) const
{
    double r, g, b;
364
    lookup_brdf_val(brdf, in[0], in[1], in[2], r, g, b) ;
365 366 367 368 369 370 371

    vec res(3);
    res[0] = r;
    res[1] = g;
    res[2] = b;
    return res;
}
Laurent Belcour's avatar
Laurent Belcour committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

// Get data size, e.g. the number of samples to fit
int data_merl::size() const 
{
	return BRDF_SAMPLING_RES_THETA_H *
          BRDF_SAMPLING_RES_THETA_D *
          BRDF_SAMPLING_RES_PHI_D / 2 ;
}

// Get min and max input space values
vec data_merl::min() const 
{
	vec res(3);
	res[0] = 0.0 ;
	res[1] = 0.0 ;
	res[2] = 0.0 ;
	return res ;
}
vec data_merl::max() const
{
	vec res(3);
	res[0] = M_PI / 2 ;
	res[1] = M_PI / 2 ;
395
	res[2] = M_PI;
Laurent Belcour's avatar
Laurent Belcour committed
396 397 398 399 400 401 402 403 404 405 406 407
	return res ;
}

int data_merl::dimX() const 
{ 
	return 3 ; 
}
int data_merl::dimY() const 
{ 
	return 3 ; 
}

408
ALTA_DLL_EXPORT data* provide_data()
Laurent Belcour's avatar
Laurent Belcour committed
409 410 411 412
{
    return new data_merl();
}

Laurent Belcour's avatar
Laurent Belcour committed
413