data.cpp 9.68 KB
Newer Older
Laurent Belcour's avatar
Laurent Belcour committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// Copyright 2005 Mitsubishi Electric Research Laboratories All Rights Reserved.

// Permission to use, copy and modify this software and its documentation without
// fee for educational, research and non-profit purposes, is hereby granted, provided
// that the above copyright notice and the following three paragraphs appear in all copies.

// To request permission to incorporate this software into commercial products contact:
// Vice President of Marketing and Business Development;
// Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139 or 
// <license@merl.com>.

// IN NO EVENT SHALL MERL BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
// OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
// ITS DOCUMENTATION, EVEN IF MERL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

// MERL SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED
// HEREUNDER IS ON AN "AS IS" BASIS, AND MERL HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
// UPDATES, ENHANCEMENTS OR MODIFICATIONS.

#include "data.h"

#include <cstdio>
#include <cstdlib>
#include <cmath>

#define BRDF_SAMPLING_RES_THETA_H       90
#define BRDF_SAMPLING_RES_THETA_D       90
#define BRDF_SAMPLING_RES_PHI_D         360

#define RED_SCALE (1.0/1500.0)
#define GREEN_SCALE (1.15/1500.0)
#define BLUE_SCALE (1.66/1500.0)
#ifdef WIN32
#define M_PI	3.1415926535897932384626433832795
#endif
// cross product of two vectors
void cross_product (double* v1, double* v2, double* out)
{
	out[0] = v1[1]*v2[2] - v1[2]*v2[1];
	out[1] = v1[2]*v2[0] - v1[0]*v2[2];
	out[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

// normalize vector
void normalize(double* v)
{
	// normalize
	double len = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
	v[0] = v[0] / len;
	v[1] = v[1] / len;
	v[2] = v[2] / len;
}

// rotate vector along one axis
void rotate_vector(double* vector, double* axis, double angle, double* out)
{
	double temp;
	double cross[3];
	double cos_ang = cos(angle);
	double sin_ang = sin(angle);

	out[0] = vector[0] * cos_ang;
	out[1] = vector[1] * cos_ang;
	out[2] = vector[2] * cos_ang;

	temp = axis[0]*vector[0]+axis[1]*vector[1]+axis[2]*vector[2];
	temp = temp*(1.0-cos_ang);

	out[0] += axis[0] * temp;
	out[1] += axis[1] * temp;
	out[2] += axis[2] * temp;

	cross_product (axis,vector,cross);
	
	out[0] += cross[0] * sin_ang;
	out[1] += cross[1] * sin_ang;
	out[2] += cross[2] * sin_ang;
}


// convert standard coordinates to half vector/difference vector coordinates
void std_coords_to_half_diff_coords(double theta_in, double fi_in, double theta_out, double fi_out,
								double& theta_half,double& fi_half,double& theta_diff,double& fi_diff )
{

	// compute in vector
	double in_vec_z = cos(theta_in);
	double proj_in_vec = sin(theta_in);
	double in_vec_x = proj_in_vec*cos(fi_in);
	double in_vec_y = proj_in_vec*sin(fi_in);
	double in[3]= {in_vec_x,in_vec_y,in_vec_z};
	normalize(in);


	// compute out vector
	double out_vec_z = cos(theta_out);
	double proj_out_vec = sin(theta_out);
	double out_vec_x = proj_out_vec*cos(fi_out);
	double out_vec_y = proj_out_vec*sin(fi_out);
	double out[3]= {out_vec_x,out_vec_y,out_vec_z};
	normalize(out);


	// compute halfway vector
	double half_x = (in_vec_x + out_vec_x)/2.0f;
	double half_y = (in_vec_y + out_vec_y)/2.0f;
	double half_z = (in_vec_z + out_vec_z)/2.0f;
	double half[3] = {half_x,half_y,half_z};
	normalize(half);

	// compute  theta_half, fi_half
	theta_half = acos(half[2]);
	fi_half = atan2(half[1], half[0]);


	double bi_normal[3] = {0.0, 1.0, 0.0};
	double normal[3] = { 0.0, 0.0, 1.0 };
	double temp[3];
	double diff[3];

	// compute diff vector
	rotate_vector(in, normal , -fi_half, temp);
	rotate_vector(temp, bi_normal, -theta_half, diff);
	
	// compute  theta_diff, fi_diff	
	theta_diff = acos(diff[2]);
	fi_diff = atan2(diff[1], diff[0]);

}


// Lookup theta_half index
// This is a non-linear mapping!
// In:  [0 .. pi/2]
// Out: [0 .. 89]
inline int theta_half_index(double theta_half)
{
	if (theta_half <= 0.0)
		return 0;
	double theta_half_deg = ((theta_half / (M_PI/2.0))*BRDF_SAMPLING_RES_THETA_H);
	double temp = theta_half_deg*BRDF_SAMPLING_RES_THETA_H;
	temp = sqrt(temp);
	int ret_val = (int)temp;
	if (ret_val < 0) ret_val = 0;
	if (ret_val >= BRDF_SAMPLING_RES_THETA_H)
		ret_val = BRDF_SAMPLING_RES_THETA_H-1;
	return ret_val;
}


// Lookup theta_diff index
// In:  [0 .. pi/2]
// Out: [0 .. 89]
inline int theta_diff_index(double theta_diff)
{
	int tmp = int(theta_diff / (M_PI * 0.5) * BRDF_SAMPLING_RES_THETA_D);
	if (tmp < 0)
		return 0;
	else if (tmp < BRDF_SAMPLING_RES_THETA_D - 1)
		return tmp;
	else
		return BRDF_SAMPLING_RES_THETA_D - 1;
}


// Lookup phi_diff index
inline int phi_diff_index(double phi_diff)
{
	// Because of reciprocity, the BRDF is unchanged under
	// phi_diff -> phi_diff + M_PI
	if (phi_diff < 0.0)
		phi_diff += M_PI;

	// In: phi_diff in [0 .. pi]
	// Out: tmp in [0 .. 179]
	int tmp = int(phi_diff / M_PI * BRDF_SAMPLING_RES_PHI_D / 2);
	if (tmp < 0)	
		return 0;
	else if (tmp < BRDF_SAMPLING_RES_PHI_D / 2 - 1)
		return tmp;
	else
		return BRDF_SAMPLING_RES_PHI_D / 2 - 1;
}


// Given a pair of incoming/outgoing angles, look up the BRDF.
void lookup_brdf_val(double* brdf, double theta_in, double fi_in,
			  double theta_out, double fi_out, 
			  double& red_val,double& green_val,double& blue_val)
{
	// Convert to halfangle / difference angle coordinates
	double theta_half, fi_half, theta_diff, fi_diff;
	
	std_coords_to_half_diff_coords(theta_in, fi_in, theta_out, fi_out,
		       theta_half, fi_half, theta_diff, fi_diff);


	// Find index.
	// Note that phi_half is ignored, since isotropic BRDFs are assumed
	int ind = phi_diff_index(fi_diff) +
		  theta_diff_index(theta_diff) * BRDF_SAMPLING_RES_PHI_D / 2 +
		  theta_half_index(theta_half) * BRDF_SAMPLING_RES_PHI_D / 2 *
					         BRDF_SAMPLING_RES_THETA_D;

	red_val = brdf[ind] * RED_SCALE;
	green_val = brdf[ind + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] * GREEN_SCALE;
	blue_val = brdf[ind + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] * BLUE_SCALE;

	
	if (red_val < 0.0 || green_val < 0.0 || blue_val < 0.0)
		fprintf(stderr, "Below horizon.\n");

}

// Read BRDF data
bool read_brdf(const char *filename, double* &brdf)
{
	FILE *f = fopen(filename, "rb");
	if (!f)
		return false;

	int dims[3];
	fread(dims, sizeof(int), 3, f);
	int n = dims[0] * dims[1] * dims[2];
	if (n != BRDF_SAMPLING_RES_THETA_H *
		 BRDF_SAMPLING_RES_THETA_D *
		 BRDF_SAMPLING_RES_PHI_D / 2) 
	{
		fprintf(stderr, "Dimensions don't match\n");
		fclose(f);
		return false;
	}

	brdf = (double*) malloc (sizeof(double)*3*n);
	fread(brdf, sizeof(double), 3*n, f);

	fclose(f);
	return true;
}


// Load data from a file
void data_merl::load(const std::string& filename) 
{
	if(!read_brdf(filename.c_str(), brdf))
	{
		std::cerr << "<<ERROR>> unable to load the data as a MERL file" << std::endl ;
		throw;
	}
}
void data_merl::load(const std::string& filename, const arguments& args)
{
	if(!read_brdf(filename.c_str(), brdf))
	{
		std::cerr << "<<ERROR>> unable to load the data as a MERL file" << std::endl ;
		throw;
	}
}

// Acces to data
262
vec data_merl::get(int i) const 
Laurent Belcour's avatar
Laurent Belcour committed
263
{
264
	int phid_ind = i % (BRDF_SAMPLING_RES_PHI_D / 2);
Laurent Belcour's avatar
Laurent Belcour committed
265 266 267 268
	int thed_ind = (i / (BRDF_SAMPLING_RES_PHI_D / 2)) % BRDF_SAMPLING_RES_THETA_D ;
	int theh_ind = (i / (BRDF_SAMPLING_RES_PHI_D / 2 * BRDF_SAMPLING_RES_THETA_D)) 
		            % BRDF_SAMPLING_RES_THETA_H ;

269

Laurent Belcour's avatar
Laurent Belcour committed
270
	vec res(6) ;
Laurent Belcour's avatar
Laurent Belcour committed
271
	res[2] = phid_ind * M_PI / (BRDF_SAMPLING_RES_PHI_D / 2);
Laurent Belcour's avatar
Laurent Belcour committed
272
	res[1] = thed_ind * 0.5 * M_PI / (BRDF_SAMPLING_RES_THETA_D);
Laurent Belcour's avatar
Laurent Belcour committed
273
	res[0] = theh_ind * 0.5 * M_PI / (BRDF_SAMPLING_RES_THETA_H);
Laurent Belcour's avatar
Laurent Belcour committed
274 275 276
	res[3] = brdf[i] * RED_SCALE;
	res[4] = brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] * GREEN_SCALE;
	res[5] = brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] * BLUE_SCALE;
277
	return res ;
Laurent Belcour's avatar
Laurent Belcour committed
278
}
279
vec data_merl::operator[](int i) const 
Laurent Belcour's avatar
Laurent Belcour committed
280 281 282
{
	return get(i) ;
}
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

//! \todo Test this function
void data_merl::set(vec x)
{
	assert(x.size() == 6);
	const int phid_ind = (int)floor((x[2] / M_PI) * (BRDF_SAMPLING_RES_PHI_D/2));
	const int thed_ind = (int)floor((x[1] / (0.5*M_PI)) * BRDF_SAMPLING_RES_THETA_D);
	const int theh_ind = (int)floor((x[0] / (0.5*M_PI)) * BRDF_SAMPLING_RES_THETA_H);

	const int i = (theh_ind*BRDF_SAMPLING_RES_THETA_D + thed_ind)*(BRDF_SAMPLING_RES_PHI_D/2) + phid_ind;
	brdf[i] = x[3] / RED_SCALE;
	brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D/2] = x[4] / GREEN_SCALE;
	brdf[i + BRDF_SAMPLING_RES_THETA_H*BRDF_SAMPLING_RES_THETA_D*BRDF_SAMPLING_RES_PHI_D] = x[5] / BLUE_SCALE;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
vec data_merl::value(vec in, vec out) const
{
	// compute  thetain fi_in, theta_out fi_out
	double th_in  = acos(in[2]);
	double fi_in  = atan2(in[1], in[0]);
	double th_out = acos(out[2]);
	double fi_out = atan2(out[1], out[0]);

	double r, g, b;
	lookup_brdf_val(brdf, th_in, fi_in, th_out, fi_out, r, g, b) ;

	vec res(3);
	res[0] = r;
	res[1] = g;
	res[2] = b;
	return res;
}
Laurent Belcour's avatar
Laurent Belcour committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

// Get data size, e.g. the number of samples to fit
int data_merl::size() const 
{
	return BRDF_SAMPLING_RES_THETA_H *
          BRDF_SAMPLING_RES_THETA_D *
          BRDF_SAMPLING_RES_PHI_D / 2 ;
}

// Get min and max input space values
vec data_merl::min() const 
{
	vec res(3);
	res[0] = 0.0 ;
	res[1] = 0.0 ;
	res[2] = 0.0 ;
	return res ;
}
vec data_merl::max() const
{
	vec res(3);
	res[0] = M_PI / 2 ;
	res[1] = M_PI / 2 ;
	res[2] = M_PI / 2 ;
	return res ;
}

int data_merl::dimX() const 
{ 
	return 3 ; 
}
int data_merl::dimY() const 
{ 
	return 3 ; 
}

Laurent Belcour's avatar
Laurent Belcour committed
351 352 353 354 355
data* provide_data()
{
    return new data_merl();
}

Laurent Belcour's avatar
Laurent Belcour committed
356 357 358

Q_EXPORT_PLUGIN2(data_merl, data_merl)