data_storage.cpp 7.72 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* ALTA --- Analysis of Bidirectional Reflectance Distribution Functions

   Copyright (C) 2013, 2014, 2015 Inria

   This file is part of ALTA.

   This Source Code Form is subject to the terms of the Mozilla Public
   License, v. 2.0.  If a copy of the MPL was not distributed with this
   file, You can obtain one at http://mozilla.org/MPL/2.0/.  */

#include "data.h"
#include "data_storage.h"
#include "vertical_segment.h"

#include <iostream>
#include <limits>

18 19 20 21
#ifdef __GLIBC__
# include <endian.h>
#endif

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
void vertical_segment::load_data_from_text(std::istream& input,
																					 vertical_segment& result,
																					 const arguments& args)
{
	vec min, max ;
	vec ymin, ymax;

	result._nX = 0 ; result._nY = 0 ;
	std::vector<int> vs ; int current_vs = 0 ;
	while(input.good())
	{
		std::string line ;
		std::getline(input, line) ;
		std::stringstream linestream(line) ;

		// Discard incorrect lines
		if(linestream.peek() == '#')
		{
			linestream.ignore(1) ;

			std::string comment ;
			linestream >> comment ;

			if(comment == std::string("DIM"))
			{
				linestream >> result._nX >> result._nY ;

				vs.reserve(result.dimY()) ;
				for(int k=0; k<result.dimY(); ++k)
				{
					vs[k] = 0 ;
				}

				result._min.resize(result.dimX()) ;
				result._max.resize(result.dimX()) ;

				min = args.get_vec("min", result._nX, -std::numeric_limits<float>::max()) ;
				max = args.get_vec("max", result._nX,  std::numeric_limits<float>::max()) ;
#ifdef DEBUG
				std::cout << "<<DEBUG>> data will remove outside of " << min << " -> " << max << " x-interval" << std::endl;
#endif

				ymin = args.get_vec("ymin", result._nY, -std::numeric_limits<float>::max()) ;
				ymax = args.get_vec("ymax", result._nY,  std::numeric_limits<float>::max()) ;
#ifdef DEBUG
				std::cout << "<<DEBUG>> data will remove outside of " << ymin << " -> " << ymax << " y-interval" << std::endl;
#endif

				for(int k=0; k<result.dimX(); ++k)
				{
					result._min[k] =  std::numeric_limits<double>::max() ;
					result._max[k] = -std::numeric_limits<double>::max() ;
				}
			}
			else if(comment == std::string("VS"))
			{
				int t ;
				linestream >> t ;
				vs[current_vs] = t ; ++current_vs ;
			}
			else if(comment == std::string("PARAM_IN"))
			{
				std::string param;
				linestream >> param;
				result._in_param = params::parse_input(param);
			}
			else if(comment == std::string("PARAM_OUT"))
			{
				std::string param;
				linestream >> param;
				result._out_param = params::parse_output(param);
			}
			continue ;
		}
		else if(line.empty())
		{
			continue ;
		}
		else
		{
			// Read the data point x and y coordinates
			vec v = vec::Zero(result.dimX() + 3*result.dimY()) ;
			for(int i=0; i<result.dimX()+result.dimY(); ++i) 
			{
				linestream >> v[i] ;
			}

			// If data is not in the interval of fit
			bool is_in = true ;
			for(int i=0; i<result.dimX(); ++i)
			{
				if(v[i] < min[i] || v[i] > max[i])
				{
					is_in = false ;
				}
			}
			for(int i=0; i<result.dimY(); ++i)
			{
				if(v[result.dimX()+i] < ymin[i] || v[result.dimX()+i] > ymax[i])
				{
					is_in = false ;
				}
			}
			if(!is_in)
			{
				continue ;
			}

//			/*
			// Correction of the data by 1/cosine(theta_L)
			double factor = 1.0;
			if(args.is_defined("data-correct-cosine"))
			{
				double cart[6];
				params::convert(&v[0], result.input_parametrization(), params::CARTESIAN, cart);
				if(cart[5] > 0.0 && cart[2] > 0.0)
				{
					factor = 1.0/cart[5]*cart[2];
					for(int i=0; i<result.dimY(); ++i) 
					{
						v[i + result.dimX()] /= factor;
					}
				}
				else
				{
					continue;
				}
			}
			// End of correction
//			*/

			// Check if the data containt a vertical segment around the mean
			// value.
			for(int i=0; i<result.dimY(); ++i)
			{
				double min_dt = 0.0;
				double max_dt = 0.0;


				if(vs[i] == 2)
				{
					linestream >> min_dt ;
					linestream >> max_dt ;
					min_dt = min_dt-v[result.dimX()+i];
					max_dt = max_dt-v[result.dimX()+i];
				}
				else if(vs[i] == 1)
				{
					double dt ;
					linestream >> dt ;
					min_dt = -dt;
					max_dt =  dt;
				}
				else
				{
					double dt = args.get_float("dt", 0.1f);
					min_dt = -dt;
					max_dt =  dt;
				}

				if(args.is_defined("dt-relative"))
				{
               v[result.dimX() +   result.dimY()+i] = v[result.dimX() + i] * (1.0 + min_dt) ;
					v[result.dimX() + 2*result.dimY()+i] = v[result.dimX() + i] * (1.0 + max_dt) ;
				}
				else if(args.is_defined("dt-max"))
				{
               v[result.dimX() +   result.dimY()+i] = v[result.dimX() + i] + std::max(v[result.dimX() + i] * min_dt, min_dt);
					v[result.dimX() + 2*result.dimY()+i] = v[result.dimX() + i] + std::max(v[result.dimX() + i] * max_dt, max_dt);
				}
				else
				{
					v[result.dimX() +   result.dimY()+i] = v[result.dimX() + i] + min_dt ;
					v[result.dimX() + 2*result.dimY()+i] = v[result.dimX() + i] + max_dt ;
				}

				// You can enforce the vertical segment to stay in the positive
				// region using the --data-positive command line argument. Note
				// that the data point is also clamped to zero if negative.
				if(args.is_defined("dt-positive"))
				{
					v[result.dimX() +          i] = std::max(v[result.dimX() +          i], 0.0);
					v[result.dimX() +   result.dimY()+i] = std::max(v[result.dimX() +   result.dimY()+i], 0.0);
					v[result.dimX() + 2*result.dimY()+i] = std::max(v[result.dimX() + 2*result.dimY()+i], 0.0);
				}

#ifdef DEBUG
                std::cout << "<<DEBUG>> vs = [" << v[result.dimX() +   result.dimY()+i] << ", " << v[result.dimX() + 2*result.dimY()+i] << "]" << std::endl;
#endif
			}

			result._data.push_back(v) ;

			// Update min and max
			for(int k=0; k<result.dimX(); ++k)
			{
				result._min[k] = std::min(result._min[k], v[k]) ;
				result._max[k] = std::max(result._max[k], v[k]) ;
			}
		}
	}

	if(args.is_defined("data-correct-cosine"))
		result.save("/tmp/data-corrected.dat");

	std::cout << "<<INFO>> loaded input stream" << std::endl ;
	std::cout << "<<INFO>> data inside " << result._min << " ... " << result._max << std::endl ;
	std::cout << "<<INFO>> loading data input of R^" << result.dimX() << " -> R^" << result.dimY() << std::endl ;
	std::cout << "<<INFO>> " << result._data.size() << " elements to fit" << std::endl ;
}

void save_data_as_text(std::ostream& out, const data &data)
{
		out << "#DIM " << data.dimX() << " " << data.dimY() << std::endl;
		out << "#PARAM_IN  " << params::get_name(data.input_parametrization())  << std::endl;
		out << "#PARAM_OUT " << params::get_name(data.output_parametrization()) << std::endl;
		for(int i=0; i < data.size(); ++i)
		{
				vec x = data.get(i);
				for(int j=0; j< data.dimX() + data.dimY(); ++j)
				{
						out << x[j] << "\t";
				}
				out << std::endl;
		}
}
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

void save_data_as_binary(std::ostream &out, const data& data)
{
		out << "#DIM " << data.dimX() << " " << data.dimY() << std::endl;
		out << "#PARAM_IN  " << params::get_name(data.input_parametrization())  << std::endl;
		out << "#PARAM_OUT " << params::get_name(data.output_parametrization()) << std::endl;
		out << "#FORMAT binary" << std::endl;
		out << "#VERSION 0" << std::endl;
		out << "#PRECISION ieee754-double" << std::endl;
		out << "#SAMPLE_COUNT " << data.size() << std::endl;

		// FIXME: Note: on non-glibc systems, both macros may be undefined, so
		// the conditional is equivalent to "#if 0 == 0", which is usually what
		// we want.
#if __BYTE_ORDER == __LITTLE_ENDIAN
		out << "#ENDIAN little" << std::endl;
#else
		out << "#ENDIAN big" << std::endl;
#endif

		out << "#BEGIN_STREAM" << std::endl;

		for(int i=0; i < data.size(); ++i)
		{
				vec sample = data.get(i);
				const double *numbers = sample.data();

				assert(sample.size() == data.dimX() + data.dimY());
				out.write((const char *)numbers, sample.size() * sizeof(*numbers));
		}

		out << std::endl << "#END_STREAM" << std::endl;
}