params.h 7.08 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12 13 14 15 16 17 18 19 20
/*! \brief a static class allowing to change from one parametrization
 *  to another.
 *  \ingroup core
 *
 *  \details
 *  Any \typedef function object or \typedef data object should have
 *  an associated parametrization.
 */
class params
{
21
    public: // data
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
			 ROMEIRO_TH_TD,
			 RUSIN_TH_TD,
			 RUSIN_TH_PH_TD,
			 RUSIN_TH_TD_PD,
			 RUSIN_TH_PH_TD_PD,
			 COS_TH,
			 COS_TH_TD,
			 ISOTROPIC_TV_TL_DPHI,
			 ISOTROPIC_TD_PD, // Difference between two directions such as R and H
			 CARTESIAN,
			 SPHERICAL_TL_PL_TV_PV,
			 UNKNOWN_INPUT
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
53 54 55

    public: // methods

56
        //! \brief parse a string to provide a parametrization type.
57
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
58

59 60 61
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
62

63 64 65 66 67 68 69 70 71 72 73 74 75
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

76 77
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
78 79
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
80
        {
81 82 83 84 85
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
86
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
87 88 89 90 91 92 93 94 95 96 97
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

98 99
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
100
        //! output size.
101 102
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
103
        {
104
            double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
105
            to_cartesian(invec, intype, temvec);
106 107 108 109 110
#ifdef DEBUG
            std::cout << "<<DEBUG>> temp vec = ["
                      << temvec[0] << ", " << temvec[1] << ", " << temvec[2] << "] => ["
                      << temvec[3] << ", " << temvec[4] << ", " << temvec[5] << "]" << std::endl;
#endif
111 112 113 114 115 116
            from_cartesian(temvec, outtype, outvec);
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
117
        static void to_cartesian(const double* invec, params::input intype,
118
                                 double* outvec);
119 120 121

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
122
        static void from_cartesian(const double* invec, params::input outtype,
123
                                   double* outvec);
124 125

        //! \brief provide a dimension associated with a parametrization
126
        static int  dimension(params::input t);
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
146
                    assert(false);
147 148 149 150 151
                    return -1;
                    break;
            }
        }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
            out[2] = cos(theta_d);
167 168 169 170

				//! \todo investigate here, the rotation along N should be
				//1 of phi_h not theta_h !
            rotate_binormal(out, theta_h);
171
            rotate_normal(out, phi_h);
172 173 174 175

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
176 177 178 179 180
            out[3] = -out[0] + (dot+1.0) * half[0];
            out[4] = -out[1] + (dot+1.0) * half[1];
            out[5] = -out[2] + (dot+1.0) * half[2];

				assert(out[5] >= 0.0);
181
        }
182 183 184 185 186 187 188 189 190 191 192 193 194
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
195

196
        //! \brief rotate a cartesian vector with respect to the normal of
197
        //! theta degrees.
198
        static void rotate_normal(double* vec, double theta)
199 200 201
        {
            const double cost = cos(theta);
            const double sint = sin(theta);
202 203 204

            vec[0] = cost * vec[0] - sint * vec[1];
            vec[1] = sint * vec[0] + cost * vec[1];
205 206
        }

207
        //! \brief rotate a cartesian vector with respect to the bi-normal of
208
        //! theta degrees.
209
        static void rotate_binormal(double* vec, double theta)
210 211 212 213
        {
            const double cost = cos(theta);
            const double sint = sin(theta);

214 215
            vec[1] = cost * vec[1] - sint * vec[2];
            vec[2] = sint * vec[1] + cost * vec[2];
216
        }
217

218
		  static void print_input_params();
219

220
};