params.h 11.1 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11
/*! \class params
12
 *  \ingroup core
13 14
 *  \brief a static class allowing to change from one parametrization
 *  to another.
15
 *
16 17
 *  Any function object or data object should have an associated
 *  parametrization.
18 19 20 21 22 23
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
24 25 26
 */
class params
{
27
    public: // data
28

29 30 31 32 33
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
34 35 36 37
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
38 39 40 41
             RUSIN_VH_VD,           /*!< Half-angle parametrization with no azimutal information in
				                             vector format */
             RUSIN_VH,              /*!< Half-angle parametrization with no azimutal information
				                             and no difference direction in vector format */
42 43 44
             COS_TH_TD,
             COS_TH,

45 46 47
				 SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
				 COS_TK,                /*!< Schlick's back vector dot product with the normal */

48 49 50 51 52 53 54 55 56
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

             CARTESIAN,             /*!< Light and View vectors represented in cartesian coordinates */

57
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
58 59 60 61 62 63 64 65 66 67 68 69 70
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
71 72 73

    public: // methods

74
        //! \brief parse a string to provide a parametrization type.
75
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
76

77 78 79
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
80

81 82 83 84 85 86 87 88 89 90 91 92 93
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

94 95
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
96 97
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
98
        {
99 100 101 102 103
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
104
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
105 106 107 108 109 110 111 112 113 114 115
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

116 117
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
118
        //! output size.
119 120
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
121
        {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
			  if(intype == params::CARTESIAN)
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
150 151 152 153 154
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
155
        static void to_cartesian(const double* invec, params::input intype,
156
                                 double* outvec);
157 158 159

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
160
        static void from_cartesian(const double* invec, params::input outtype,
161
                                   double* outvec);
162 163

        //! \brief provide a dimension associated with a parametrization
164
        static int  dimension(params::input t);
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
184
                    assert(false);
185 186 187 188 189
                    return -1;
                    break;
            }
        }

190 191 192 193 194 195 196
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
197 198
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
199 200 201
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
202 203
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
204
            out[2] = cos(theta_d);
205

206
				// Rotate the diff vector to get the output vector
207
            rotate_binormal(out, theta_h);
208
            rotate_normal(out, phi_h);
209 210 211 212

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
213 214 215
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
216

217 218 219
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
220
        }
221 222 223 224 225 226 227 228 229 230 231 232 233
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
234

235 236 237 238 239 240
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
241

242
			  const double temp = cost * vec[0] + sint * vec[1];
243

244 245 246
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
247

248 249 250 251 252 253
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
254

255
			  const double temp = cost * vec[0] + sint * vec[2];
256

257 258 259
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
260

261
		  static void print_input_params();
262

263
};
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
				std::cout << "<<ERROR>> trying to change to: " << params::get_name(new_param) << std::endl;
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
323
            else if(_out_param == params::UNKNOWN_OUTPUT)
324 325 326 327 328 329 330 331 332 333 334 335 336 337
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
};