params.h 13.1 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11 12 13 14 15 16 17 18 19 20
/*! \brief a static class allowing to change from one parametrization
 *  to another.
 *  \ingroup core
 *
 *  \details
 *  Any \typedef function object or \typedef data object should have
 *  an associated parametrization.
 */
class params
{
21
    public: // data
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
			 ROMEIRO_TH_TD,
			 RUSIN_TH_TD,
			 RUSIN_TH_PH_TD,
			 RUSIN_TH_TD_PD,
			 RUSIN_TH_PH_TD_PD,
			 COS_TH,
			 COS_TH_TD,
			 ISOTROPIC_TV_TL_DPHI,
			 ISOTROPIC_TD_PD, // Difference between two directions such as R and H
			 CARTESIAN,
			 SPHERICAL_TL_PL_TV_PV,
			 UNKNOWN_INPUT
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
53 54 55

    public: // methods

56 57 58
        //! \brief parse a string to provide a parametrization type.
        static params::input parse_input(const std::string& txt)
        {
59 60 61 62 63 64 65 66 67 68 69
				for(std::map<params::input, const params::param_info>::const_iterator it=input_map.begin(); it != input_map.end(); ++it)
				{
					if(txt.compare(it->second.name) == 0)
					{
						return it->first;
					}
				}

				return params::UNKNOWN_INPUT;

			  /*
70 71 72 73 74 75 76 77
            if(txt == std::string("COS_TH"))
            {
                return params::COS_TH;
            }
            else if(txt == std::string("RUSIN_TH_TD"))
            {
                return params::RUSIN_TH_TD;
            }
78 79 80 81
            else if(txt == std::string("RUSIN_TH_PH_TD_PD"))
            {
                return params::RUSIN_TH_PH_TD_PD;
            }
82 83 84 85
            else
            {
                return params::UNKNOWN_INPUT;
            }
86
				*/
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        }

        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

102 103
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
104 105
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
106
        {
107 108 109 110 111
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
112
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
113 114 115 116 117 118 119 120 121 122 123
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

124 125
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
126
        //! output size.
127 128
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
129
        {
130
            double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
131
            to_cartesian(invec, intype, temvec);
132 133 134 135 136
#ifdef DEBUG
            std::cout << "<<DEBUG>> temp vec = ["
                      << temvec[0] << ", " << temvec[1] << ", " << temvec[2] << "] => ["
                      << temvec[3] << ", " << temvec[4] << ", " << temvec[5] << "]" << std::endl;
#endif
137 138 139 140 141 142
            from_cartesian(temvec, outtype, outvec);
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
143
        static void to_cartesian(const double* invec, params::input intype,
144 145 146 147
                                 double* outvec)
        {
            switch(intype)
            {
148 149
                // 1D Parametrizations
                case params::COS_TH:
150 151 152 153 154 155 156 157 158 159
#ifndef USE_HALF
						 half_to_cartesian(acos(invec[0]), 0.0, 0.0, 0.0, outvec);
#else
						 outvec[0] = sqrt(1.0 - invec[0]*invec[0]);
						 outvec[1] = 0;
						 outvec[2] = invec[0];							
						 outvec[3] = sqrt(1.0 - invec[0]*invec[0]);
						 outvec[4] = 0;
						 outvec[5] = invec[0];							
#endif
160 161
                    break;

162 163 164 165 166 167 168 169 170
                // 2D Parametrizations
                case params::COS_TH_TD:
                    half_to_cartesian(acos(invec[0]), 0.0, acos(invec[1]), 0.0, outvec);
                    break;

                case params::RUSIN_TH_TD:
                    half_to_cartesian(invec[0], 0.0, invec[1], 0.0, outvec);
                    break;

171 172
                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
173
                    half_to_cartesian(invec[0], invec[1], invec[2], 0.0, outvec);
174 175 176 177
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
178
                    half_to_cartesian(invec[0], invec[1], invec[2], invec[3], outvec);
179 180
                    break;

181 182 183 184 185 186 187 188
                case params::SPHERICAL_TL_PL_TV_PV:
                    outvec[0] = cos(invec[1])*sin(invec[0]);
                    outvec[1] = sin(invec[1])*sin(invec[0]);
						  outvec[2] = cos(invec[0]);
                    outvec[3] = cos(invec[3])*sin(invec[2]);
                    outvec[4] = sin(invec[3])*sin(invec[2]);
						  outvec[5] = cos(invec[2]);
                    break;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::to_cartesian");
                    break;
            }

        }

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
204
        static void from_cartesian(const double* invec, params::input outtype,
205 206 207 208 209 210 211 212 213 214 215
                                   double* outvec)
        {
            // Compute the half vector
            double half[3] ;
            half[0] = invec[0] + invec[3];
            half[1] = invec[1] + invec[4];
            half[2] = invec[2] + invec[5];
            double half_norm = sqrt(half[0]*half[0] + half[1]*half[1] + half[2]*half[2]);
            half[0] /= half_norm;
            half[1] /= half_norm;
            half[2] /= half_norm;
216 217 218
            
				// Difference vector 
				double diff[3];
219 220 221

            switch(outtype)
            {
222 223 224 225 226
                // 1D Parametrizations
                case params::COS_TH:
                    outvec[0] = half[2];
                    break;

227 228 229 230 231 232 233 234 235 236 237
                // 2D Parametrizations
                case params::COS_TH_TD:
                    outvec[0] = half[2];
                    outvec[1] = half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2];
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                    outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
                    outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                    break;
                
                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
						  outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
						  
						  // Compute the diff vector
						  diff[0] = invec[0];
						  diff[1] = invec[1];
						  diff[2] = invec[2];
						  rotate_normal(diff, -outvec[1]);
						  rotate_binormal(diff, -outvec[0]);

						  outvec[2] = acos(diff[2]);
						  outvec[3] = atan2(diff[0], diff[1]);
254 255
                    break;

256 257 258 259 260 261 262
					 case params::SPHERICAL_TL_PL_TV_PV:
						  outvec[0] = acos(invec[2]);
						  outvec[1] = atan2(invec[0], invec[1]);
						  outvec[2] = acos(invec[5]);
						  outvec[3] = atan2(invec[3], invec[4]);
						  break;

263 264 265 266 267 268
                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
269
                    assert(false);
270 271 272 273 274
                    break;
            }
        }

        //! \brief provide a dimension associated with a parametrization
275
        static int  dimension(params::input t)
276
        {
277 278 279 280 281 282 283 284 285 286
			  std::map<params::input, const params::param_info>::const_iterator it = params::input_map.find(t);
			  if(it != params::input_map.end())
			  {
				  return it->second.dimension;
			  }
			  else
			  {
				  return -1;
			  }
			  /*
287 288
            switch(t)
            {
289 290 291 292 293
                // 1D Parametrizations
                case params::COS_TH:
                    return 1;
                    break;

294 295
                // 2D Parametrizations
                case params::ISOTROPIC_TD_PD:
296
                case params::RUSIN_TH_TD:
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                case params::ROMEIRO_TH_TD:
                case params::COS_TH_TD:
                    return 2;
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                case params::RUSIN_TH_TD_PD:
                case params::ISOTROPIC_TV_TL_DPHI:
                    return 3;
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
                case params::SPHERICAL_TL_PL_TV_PV:
                    return 4;
                    break;

                // 6D Parametrization
                case params::CARTESIAN:
                    return 6;
                    break;

                default:
321
                    assert(false);
322 323 324
                    return -1;
                    break;
            }
325
				*/
326 327
        }

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
346
                    assert(false);
347 348 349 350 351
                    return -1;
                    break;
            }
        }

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
            out[2] = cos(theta_d);
367 368 369 370 371

				//! \todo investigate here, the rotation along N should be
				//1 of phi_h not theta_h !
            rotate_normal(out, phi_h);
            rotate_binormal(out, theta_h);
372 373 374 375

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
376 377 378 379 380
            out[3] = -out[0] + (dot+1.0) * half[0];
            out[4] = -out[1] + (dot+1.0) * half[1];
            out[5] = -out[2] + (dot+1.0) * half[2];

				assert(out[5] >= 0.0);
381 382
        }

383
        //! \brief rotate a cartesian vector with respect to the normal of
384
        //! theta degrees.
385
        static void rotate_normal(double* vec, double theta)
386 387 388
        {
            const double cost = cos(theta);
            const double sint = sin(theta);
389 390 391

            vec[0] = cost * vec[0] - sint * vec[1];
            vec[1] = sint * vec[0] + cost * vec[1];
392 393
        }

394
        //! \brief rotate a cartesian vector with respect to the bi-normal of
395
        //! theta degrees.
396
        static void rotate_binormal(double* vec, double theta)
397 398 399 400
        {
            const double cost = cos(theta);
            const double sint = sin(theta);

401 402
            vec[0] = cost * vec[0] - sint * vec[2];
            vec[2] = sint * vec[0] + cost * vec[2];
403
        }
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

		  static void print_input_params()
		  {
				for(std::map<params::input, const params::param_info>::const_iterator it=input_map.begin(); it != input_map.end(); ++it)
				{
					std::cout << it->second.name << std::endl;
				}
		  }

	 protected:

		  struct param_info
		  {
				param_info(std::string n, int d, std::string i) : 
					name(n), dimension(d), info(i) { };

			  std::string name;
			  int dimension;
			  std::string info;
		  };

		  static const std::map<params::input, const params::param_info> input_map;
426
};