params.h 8.28 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#pragma once

/*! \brief a static class allowing to change from one parametrization
 *  to another.
 *  \ingroup core
 *
 *  \details
 *  Any \typedef function object or \typedef data object should have
 *  an associated parametrization.
 */
class params
{
13
    public: // data
14

15 16 17 18 19
        //! \brief list of all supported parametrization. An unsupported
        //! parametrization will go under the name <em>unknown</em>.
        enum type
        {
            ROMEIRO_TH_TD,
20
            RUSIN_TH_TD,
21 22 23
            RUSIN_TH_PH_TD,
            RUSIN_TH_TD_PD,
            RUSIN_TH_PH_TD_PD,
24
            COS_TH,
25 26 27 28 29 30 31 32 33 34
            COS_TH_TD,
            ISOTROPIC_TV_TL_DPHI,
            ISOTROPIC_TD_PD, // Difference between two directions such as R and H
            CARTESIAN,
            SPHERICAL_TL_PL_TV_PV,
            UNKNOWN
        };

    public: // methods

35 36 37 38
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
        static double* convert(const double* invec, params::type intype,
                               params::type outtype)
39
        {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
                double  temvec[6]; // Temp CARTESIAN vectors
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

57 58
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        //! output size.
        static void convert(const double* invec, params::type intype,
                            params::type outtype, double* outvec)
        {
            double  temvec[6]; // Temp CARTESIAN vectors
            to_cartesian(invec, intype, temvec);
            from_cartesian(temvec, outtype, outvec);
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
        static void to_cartesian(const double* invec, params::type intype,
                                 double* outvec)
        {
            switch(intype)
            {
76 77 78 79 80
                // 1D Parametrizations
                case params::COS_TH:
                    half_to_cartesian(acos(invec[0]), 0.0, 0.0, 0.0, outvec);
                    break;

81 82 83 84 85 86 87 88 89
                // 2D Parametrizations
                case params::COS_TH_TD:
                    half_to_cartesian(acos(invec[0]), 0.0, acos(invec[1]), 0.0, outvec);
                    break;

                case params::RUSIN_TH_TD:
                    half_to_cartesian(invec[0], 0.0, invec[1], 0.0, outvec);
                    break;

90 91
                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
92
                    half_to_cartesian(invec[0], invec[1], invec[2], 0.0, outvec);
93 94 95 96
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
97
                    half_to_cartesian(invec[0], invec[1], invec[2], invec[3], outvec);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                    break;


                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::to_cartesian");
                    break;
            }

        }

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
        static void from_cartesian(const double* invec, params::type outtype,
                                   double* outvec)
        {
            // Compute the half vector
            double half[3] ;
            half[0] = invec[0] + invec[3];
            half[1] = invec[1] + invec[4];
            half[2] = invec[2] + invec[5];
            double half_norm = sqrt(half[0]*half[0] + half[1]*half[1] + half[2]*half[2]);
            half[0] /= half_norm;
            half[1] /= half_norm;
            half[2] /= half_norm;

            switch(outtype)
            {
130 131 132 133 134
                // 1D Parametrizations
                case params::COS_TH:
                    outvec[0] = half[2];
                    break;

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
                // 2D Parametrizations
                case params::COS_TH_TD:
                    outvec[0] = half[2];
                    outvec[1] = half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2];
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                    outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
                    outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]);
                    break;

                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::from_cartesian");
                    break;
            }
        }

        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::type t)
        {
            switch(t)
            {
164 165 166 167 168
                // 1D Parametrizations
                case params::COS_TH:
                    return 1;
                    break;

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                // 2D Parametrizations
                case params::ISOTROPIC_TD_PD:
                case params::ROMEIRO_TH_TD:
                case params::COS_TH_TD:
                    return 2;
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                case params::RUSIN_TH_TD_PD:
                case params::ISOTROPIC_TV_TL_DPHI:
                    return 3;
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
                case params::SPHERICAL_TL_PL_TV_PV:
                    return 4;
                    break;

                // 6D Parametrization
                case params::CARTESIAN:
                    return 6;
                    break;

                default:
                    return -1;
                    break;
            }
        }

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
            out[2] = cos(theta_d);
            rotate_binormal(out, theta_h);
            rotate_normal(out, phi_h);

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
        }

226
        //! \brief rotate a cartesian vector with respect to the normal of
227
        //! theta degrees.
228
        static void rotate_normal(double* vec, double theta)
229 230 231
        {
            const double cost = cos(theta);
            const double sint = sin(theta);
232 233 234

            vec[0] = cost * vec[0] - sint * vec[1];
            vec[1] = sint * vec[0] + cost * vec[1];
235 236
        }

237
        //! \brief rotate a cartesian vector with respect to the bi-normal of
238
        //! theta degrees.
239
        static void rotate_binormal(double* vec, double theta)
240 241 242 243
        {
            const double cost = cos(theta);
            const double sint = sin(theta);

244 245
            vec[0] = cost * vec[0] - sint * vec[2];
            vec[2] = sint * vec[0] + cost * vec[2];
246
        }
247
};