params.h 10.2 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11
/*! \class params
12
 *  \ingroup core
13 14
 *  \brief a static class allowing to change from one parametrization
 *  to another.
15
 *
16 17
 *  Any function object or data object should have an associated
 *  parametrization.
18 19 20 21 22 23
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
24 25 26
 */
class params
{
27
    public: // data
28

29 30 31 32 33
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
34 35 36 37 38 39 40
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
             COS_TH_TD,
             COS_TH,

41 42 43
				 SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
				 COS_TK,                /*!< Schlick's back vector dot product with the normal */

44 45 46 47 48 49 50 51 52
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

             CARTESIAN,             /*!< Light and View vectors represented in cartesian coordinates */

53
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
54 55 56 57 58 59 60 61 62 63 64 65 66
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
67 68 69

    public: // methods

70
        //! \brief parse a string to provide a parametrization type.
71
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
72

73 74 75
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
76

77 78 79 80 81 82 83 84 85 86 87 88 89
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

90 91
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
92 93
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
94
        {
95 96 97 98 99
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
100
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
101 102 103 104 105 106 107 108 109 110 111
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

112 113
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
114
        //! output size.
115 116
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
117
        {
118 119 120 121 122 123 124 125 126 127 128 129 130
            if(intype != outtype)
            {
                // temporary CARTESIAN vector
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);
            }
            else
            {
                int dim = dimension(outtype);
                for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
            }
131 132 133 134 135
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
136
        static void to_cartesian(const double* invec, params::input intype,
137
                                 double* outvec);
138 139 140

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
141
        static void from_cartesian(const double* invec, params::input outtype,
142
                                   double* outvec);
143 144

        //! \brief provide a dimension associated with a parametrization
145
        static int  dimension(params::input t);
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
165
                    assert(false);
166 167 168 169 170
                    return -1;
                    break;
            }
        }

171 172 173 174 175 176 177
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
178 179
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
180 181 182
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
183 184
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
185
            out[2] = cos(theta_d);
186

187
				// Rotate the diff vector to get the output vector
188
            rotate_binormal(out, theta_h);
189
            rotate_normal(out, phi_h);
190 191 192 193

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
194 195 196
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
197

198 199 200
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
201
        }
202 203 204 205 206 207 208 209 210 211 212 213 214
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
215

216 217 218 219 220 221
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
222

223
			  const double temp = cost * vec[0] + sint * vec[1];
224

225 226 227
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
228

229 230 231 232 233 234
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
235

236
			  const double temp = cost * vec[0] + sint * vec[2];
237

238 239 240
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
241

242
		  static void print_input_params();
243

244
};
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
				std::cout << "<<ERROR>> trying to change to: " << params::get_name(new_param) << std::endl;
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
304
            else if(_out_param == params::UNKNOWN_OUTPUT)
305 306 307 308 309 310 311 312 313 314 315 316 317 318
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
};