params.h 11.1 KB
Newer Older
1 2
#pragma once

3 4 5 6 7 8 9 10
#include <string>
#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>

11
/*! \class params
12
 *  \ingroup core
13 14
 *  \brief a static class allowing to change from one parametrization
 *  to another.
15
 *
16 17
 *  Any function object or data object should have an associated
 *  parametrization.
18 19 20 21 22 23
 *
 *  We use the following convention to defined the tangent, normal and
 *  bi-normal of the surface:
 *   * The normal is the upper vector (0, 0, 1)
 *   * The tangent direction is along x direction (1, 0, 0)
 *   * The bi-normal is along the y direction (0, 1, 0)
24 25 26
 */
class params
{
27
    public: // data
28

29 30 31 32 33
		 //! \brief list of all supported parametrization for the input space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum input
		 {
34 35 36 37
             RUSIN_TH_PH_TD_PD,     /*!< Half-angle parametrization as described in [Rusinkiewicz'98] */
             RUSIN_TH_PH_TD,
             RUSIN_TH_TD_PD,
             RUSIN_TH_TD,           /*!< Half-angle parametrization with no azimutal information */
38 39 40 41
             RUSIN_VH_VD,           /*!< Half-angle parametrization with no azimutal information in
				                             vector format */
             RUSIN_VH,              /*!< Half-angle parametrization with no azimutal information
				                             and no difference direction in vector format */
42 43 44
             COS_TH_TD,
             COS_TH,

45 46 47
             SCHLICK_TK_PK,         /*!< Schlick's back vector parametrization */
             SCHLICK_VK,            /*!< Schlick's back vector */
             COS_TK,                /*!< Schlick's back vector dot product with the normal */
48

49 50 51 52 53 54 55 56 57
             STEREOGRAPHIC,         /*!< Stereographic projection of the Light and View vectors */

             SPHERICAL_TL_PL_TV_PV, /*!< Light and View vectors represented in spherical coordinates */
             ISOTROPIC_TV_TL_DPHI,  /*!< Light and View vectors represented in spherical coordinates,
                                         with the difference of azimutal coordinates in the last component  */
             ISOTROPIC_TD_PD,       /*!< Difference between two directions such as R and H */

             CARTESIAN,             /*!< Light and View vectors represented in cartesian coordinates */

58
             UNKNOWN_INPUT          /*!< Default behaviour. Only use this is you do not fit BRDF data */
59 60 61 62 63 64 65 66 67 68 69 70 71
		 };

		 //! \brief list of all supported parametrization for the output space.
		 //! An unsupported parametrization will go under the name
		 //! <em>unknown</em>.
		 enum output
		 {
			 INV_STERADIAN,
			 ENERGY,
			 RGB_COLOR,
			 XYZ_COLOR,
			 UNKNOWN_OUTPUT
		 };
72 73 74

    public: // methods

75
        //! \brief parse a string to provide a parametrization type.
76
        static params::input parse_input(const std::string& txt);
Laurent Belcour's avatar
Laurent Belcour committed
77

78 79 80
		  //! \brief look for the string associated with a parametrization
		  //! type.
		  static std::string get_name(const params::input param);
Laurent Belcour's avatar
Laurent Belcour committed
81

82 83 84 85 86 87 88 89 90 91 92 93 94
        //! \brief parse a string to provide a parametrization type.
        static params::output parse_output(const std::string& txt)
        {
            if(txt == std::string("ENERGY"))
            {
                return params::ENERGY;
            }
            else
            {
                return params::UNKNOWN_OUTPUT;
            }
        }

95 96
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
97 98
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
99
        {
100 101 102 103 104
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
105
                double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // Temp CARTESIAN vectors
106 107 108 109 110 111 112 113 114 115 116
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

117 118
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
119
        //! output size.
120 121
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
122
        {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
			  // The convertion is done using the cartesian parametrization as
			  // an intermediate one. If the two parametrizations are equals
			  // there is no need to perform the conversion.
			  if(intype == outtype)
			  {
				  int dim = dimension(outtype);
				  for(int i=0; i<dim; ++i) { outvec[i] = invec[i]; }
			  }
			  // If the input parametrization is the CARTESIAN param, then 
			  // there is no need to transform the input data.
			  if(intype == params::CARTESIAN)
			  {
				  from_cartesian(invec, outtype, outvec);
			  }
			  // If the output parametrization is the CARTESIAN param, then
			  // there is no need to convert back to another param.
			  else if(outtype == params::CARTESIAN)
			  {
				  to_cartesian(invec, intype, outvec);
			  }
			  else
			  {
				  // temporary CARTESIAN vector
				  double  temvec[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

				  to_cartesian(invec, intype, temvec);
				  from_cartesian(temvec, outtype, outvec);
			  }
151 152 153 154 155
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
156
        static void to_cartesian(const double* invec, params::input intype,
157
                                 double* outvec);
158 159 160

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
161
        static void from_cartesian(const double* invec, params::input outtype,
162
                                   double* outvec);
163 164

        //! \brief provide a dimension associated with a parametrization
165
        static int  dimension(params::input t);
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
185
                    assert(false);
186 187 188 189 190
                    return -1;
                    break;
            }
        }

191 192 193 194 195 196 197
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
198 199
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
200 201 202
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
203 204
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
205
            out[2] = cos(theta_d);
206

207
				// Rotate the diff vector to get the output vector
208
            rotate_binormal(out, theta_h);
209
            rotate_normal(out, phi_h);
210 211 212 213

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
214 215 216
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
217

218 219 220
#ifdef DEBUG
				assert(out[2] >= 0.0 && out[5] >= 0.0);
#endif
221
        }
222 223 224 225 226 227 228 229 230 231 232 233 234
			
        //! \brief from the 4D definition of a classical vector parametrization,
        //! export the cartesian coordinates.
		  static void classical_to_cartesian(double theta_l, double phi_l, 
		                                     double theta_v, double phi_v, double* out)
		  {
			  out[0] = cos(phi_l)*sin(theta_l);
			  out[1] = sin(phi_l)*sin(theta_l);
			  out[2] = cos(theta_l);
			  out[3] = cos(phi_v)*sin(theta_v);
			  out[4] = sin(phi_v)*sin(theta_v);
			  out[5] = cos(theta_v);
		  }
235

236 237 238 239 240 241
		  //! \brief rotate a cartesian vector with respect to the normal of
		  //! theta degrees.
		  static void rotate_normal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
242

243
			  const double temp = cost * vec[0] + sint * vec[1];
244

245 246 247
			  vec[1] = cost * vec[1] - sint * vec[0];
			  vec[0] = temp;
		  }
248

249 250 251 252 253 254
		  //! \brief rotate a cartesian vector with respect to the bi-normal of
		  //! theta degrees.
		  static void rotate_binormal(double* vec, double theta)
		  {
			  const double cost = cos(theta);
			  const double sint = sin(theta);
255

256
			  const double temp = cost * vec[0] + sint * vec[2];
257

258 259 260
			  vec[2] = cost * vec[2] - sint * vec[0];
			  vec[0] = temp;
		  }
261

262
		  static void print_input_params();
263

264
};
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

/*! \brief A parametrized object. Allow to define function object (either data
 *  or functions that are defined over an input space and output space. This
 *  Object allowas to change the parametrization of the input or output space.
 */
class parametrized
{
	public:
		parametrized() : _in_param(params::UNKNOWN_INPUT), 
		                 _out_param(params::UNKNOWN_OUTPUT) { }

		//! \brief provide the input parametrization of the object.
		virtual params::input parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the input parametrization of the object.
		virtual params::input input_parametrization() const
		{
			return _in_param;
		}
		
		//! \brief provide the outout parametrization of the object.
		virtual params::output output_parametrization() const
		{
			return _out_param;
		}

		//! \brief can set the input parametrization of a non-parametrized
		//! object. Print an error if it is already defined.
		virtual void setParametrization(params::input new_param)
		{
			//! \todo Here is something strange happening. The equality between
			//! those enums is not correct for UNKNOWN_INPUT
			if(_in_param == new_param)
			{
				return;
			}
			else if(_in_param == params::UNKNOWN_INPUT)
			{
				_in_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an input parametrization is already defined: " << params::get_name(_in_param) << std::endl;
				std::cout << "<<ERROR>> trying to change to: " << params::get_name(new_param) << std::endl;
			}
		}
		
		//! \brief can set the output parametrization of a non-parametrized
		//! function. Throw an exception if it tries to erase a previously
		//! defined one.
		virtual void setParametrization(params::output new_param)
		{
			if(_out_param == new_param)
			{
				return;
			}
324
            else if(_out_param == params::UNKNOWN_OUTPUT)
325 326 327 328 329 330 331 332 333 334 335 336 337 338
			{
				_out_param = new_param;
			}
			else
			{
				std::cout << "<<ERROR>> an output parametrization is already defined: " << std::endl;
			}
		}

	protected:
		// Input and output parametrization
		params::input  _in_param ;
		params::output _out_param ;
};