params.h 9.26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#pragma once

/*! \brief a static class allowing to change from one parametrization
 *  to another.
 *  \ingroup core
 *
 *  \details
 *  Any \typedef function object or \typedef data object should have
 *  an associated parametrization.
 */
class params
{
13
    public: // data
14

15 16 17 18
        //! \brief list of all supported parametrization for the input space.
        //! An unsupported parametrization will go under the name
        //! <em>unknown</em>.
        enum input
19 20
        {
            ROMEIRO_TH_TD,
21
            RUSIN_TH_TD,
22 23 24
            RUSIN_TH_PH_TD,
            RUSIN_TH_TD_PD,
            RUSIN_TH_PH_TD_PD,
25
            COS_TH,
26 27 28 29 30
            COS_TH_TD,
            ISOTROPIC_TV_TL_DPHI,
            ISOTROPIC_TD_PD, // Difference between two directions such as R and H
            CARTESIAN,
            SPHERICAL_TL_PL_TV_PV,
31 32 33 34 35 36 37 38 39 40 41 42 43
            UNKNOWN_INPUT
        };

        //! \brief list of all supported parametrization for the output space.
        //! An unsupported parametrization will go under the name
        //! <em>unknown</em>.
        enum output
        {
            INV_STERADIAN,
            ENERGY,
            RGB_COLOR,
            XYZ_COLOR,
            UNKNOWN_OUTPUT
44 45 46 47
        };

    public: // methods

48 49
        //! \brief static function for input type convertion. This
        //! function allocate the resulting vector.
50 51
        static double* convert(const double* invec, params::input intype,
                               params::input outtype)
52
        {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            int dim = dimension(outtype); // Get the size of the output vector

            if(dim > 0)
            {
                double* outvec = new double[dim];
                double  temvec[6]; // Temp CARTESIAN vectors
                to_cartesian(invec, intype, temvec);
                from_cartesian(temvec, outtype, outvec);

                return outvec;
            }
            else
            {
                return NULL;
            }
        }

70 71
        //! \brief static function for input type convertion. The outvec
        //! resulting vector should be allocated with the correct
72
        //! output size.
73 74
        static void convert(const double* invec, params::input intype,
                            params::input outtype, double* outvec)
75 76 77 78 79 80 81 82 83
        {
            double  temvec[6]; // Temp CARTESIAN vectors
            to_cartesian(invec, intype, temvec);
            from_cartesian(temvec, outtype, outvec);
        }

        //! \brief convert a input vector in a given parametrization to an
        //! output vector in a cartesian parametrization, that is two 3d
        //! vectors concatenated.
84
        static void to_cartesian(const double* invec, params::input intype,
85 86 87 88
                                 double* outvec)
        {
            switch(intype)
            {
89 90 91 92 93
                // 1D Parametrizations
                case params::COS_TH:
                    half_to_cartesian(acos(invec[0]), 0.0, 0.0, 0.0, outvec);
                    break;

94 95 96 97 98 99 100 101 102
                // 2D Parametrizations
                case params::COS_TH_TD:
                    half_to_cartesian(acos(invec[0]), 0.0, acos(invec[1]), 0.0, outvec);
                    break;

                case params::RUSIN_TH_TD:
                    half_to_cartesian(invec[0], 0.0, invec[1], 0.0, outvec);
                    break;

103 104
                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
105
                    half_to_cartesian(invec[0], invec[1], invec[2], 0.0, outvec);
106 107 108 109
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
110
                    half_to_cartesian(invec[0], invec[1], invec[2], invec[3], outvec);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                    break;


                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::to_cartesian");
                    break;
            }

        }

        //! \brief convert a input CARTESIAN vector, that is two 3d vectors
        //! concatenated  to an output vector in a given parametrization.
128
        static void from_cartesian(const double* invec, params::input outtype,
129 130 131 132 133 134 135 136 137 138 139 140 141 142
                                   double* outvec)
        {
            // Compute the half vector
            double half[3] ;
            half[0] = invec[0] + invec[3];
            half[1] = invec[1] + invec[4];
            half[2] = invec[2] + invec[5];
            double half_norm = sqrt(half[0]*half[0] + half[1]*half[1] + half[2]*half[2]);
            half[0] /= half_norm;
            half[1] /= half_norm;
            half[2] /= half_norm;

            switch(outtype)
            {
143 144 145 146 147
                // 1D Parametrizations
                case params::COS_TH:
                    outvec[0] = half[2];
                    break;

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                // 2D Parametrizations
                case params::COS_TH_TD:
                    outvec[0] = half[2];
                    outvec[1] = half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2];
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                    outvec[0] = acos(half[2]);
                    outvec[1] = atan2(half[0], half[1]);
                    outvec[2] = acos(half[0]*outvec[0] + half[1]*outvec[1] + half[2]*outvec[2]);
                    break;

                // 6D Parametrization
                case params::CARTESIAN:
                    memcpy(outvec, invec, 6*sizeof(double));
                    break;

                default:
                    throw("Transformation not implemented, params::from_cartesian");
                    break;
            }
        }

        //! \brief provide a dimension associated with a parametrization
173
        static int  dimension(params::input t)
174 175 176
        {
            switch(t)
            {
177 178 179 180 181
                // 1D Parametrizations
                case params::COS_TH:
                    return 1;
                    break;

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
                // 2D Parametrizations
                case params::ISOTROPIC_TD_PD:
                case params::ROMEIRO_TH_TD:
                case params::COS_TH_TD:
                    return 2;
                    break;

                // 3D Parametrization
                case params::RUSIN_TH_PH_TD:
                case params::RUSIN_TH_TD_PD:
                case params::ISOTROPIC_TV_TL_DPHI:
                    return 3;
                    break;

                // 4D Parametrization
                case params::RUSIN_TH_PH_TD_PD:
                case params::SPHERICAL_TL_PL_TV_PV:
                    return 4;
                    break;

                // 6D Parametrization
                case params::CARTESIAN:
                    return 6;
                    break;

                default:
                    return -1;
                    break;
            }
        }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        //! \brief provide a dimension associated with a parametrization
        static int  dimension(params::output t)
        {
            switch(t)
            {
                // 1D Parametrizations
                case params::INV_STERADIAN:
                case params::ENERGY:
                    return 1;
                    break;

                // 3D Parametrization
                case params::RGB_COLOR:
                case params::XYZ_COLOR:
                    return 3;
                    break;

                default:
                    return -1;
                    break;
            }
        }

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        //! \brief from the 4D definition of a half vector parametrization,
        //! export the cartesian coordinates.
        static void half_to_cartesian(double theta_h, double phi_h,
                                      double theta_d, double phi_d, double* out)
        {
            // Calculate the half vector
            double half[3];
            half[0] = sin(theta_h)*cos(phi_h);
            half[1] = sin(theta_h)*sin(phi_h);
            half[2] = cos(theta_h);

            // Compute the light vector using the rotation formula.
            out[0] = sin(theta_d)*cos(phi_d);
            out[1] = sin(theta_d)*sin(phi_d);
            out[2] = cos(theta_d);
            rotate_binormal(out, theta_h);
            rotate_normal(out, phi_h);

            // Compute the out vector from the in vector and the half
            // vector.
            const double dot = out[0]*half[0] + out[1]*half[1] + out[2]*half[2];
            out[3] = -out[0] + 2.0*dot * half[0];
            out[4] = -out[1] + 2.0*dot * half[1];
            out[5] = -out[2] + 2.0*dot * half[2];
        }

262
        //! \brief rotate a cartesian vector with respect to the normal of
263
        //! theta degrees.
264
        static void rotate_normal(double* vec, double theta)
265 266 267
        {
            const double cost = cos(theta);
            const double sint = sin(theta);
268 269 270

            vec[0] = cost * vec[0] - sint * vec[1];
            vec[1] = sint * vec[0] + cost * vec[1];
271 272
        }

273
        //! \brief rotate a cartesian vector with respect to the bi-normal of
274
        //! theta degrees.
275
        static void rotate_binormal(double* vec, double theta)
276 277 278 279
        {
            const double cost = cos(theta);
            const double sint = sin(theta);

280 281
            vec[0] = cost * vec[0] - sint * vec[2];
            vec[2] = sint * vec[0] + cost * vec[2];
282
        }
283
};