zlascl.f 9.37 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
!!!
!
! -- Inria
! -- (C) Copyright 2012
!
! This software is a computer program whose purpose is to process
! Matrices Over Runtime Systems @ Exascale (MORSE). More information
! can be found on the following website: http://www.inria.fr/en/teams/morse.
! 
! This software is governed by the CeCILL-B license under French law and
! abiding by the rules of distribution of free software.  You can  use, 
! modify and/ or redistribute the software under the terms of the CeCILL-B
! license as circulated by CEA, CNRS and INRIA at the following URL
! "http://www.cecill.info". 
! 
! As a counterpart to the access to the source code and  rights to copy,
! modify and redistribute granted by the license, users are provided only
! with a limited warranty  and the software's author,  the holder of the
! economic rights,  and the successive licensors  have only  limited
! liability. 
! 
! In this respect, the user's attention is drawn to the risks associated
! with loading,  using,  modifying and/or developing or reproducing the
! software by the user in light of its specific status of free software,
! that may mean  that it is complicated to manipulate,  and  that  also
! therefore means  that it is reserved for developers  and  experienced
! professionals having in-depth computer knowledge. Users are therefore
! encouraged to load and test the software's suitability as regards their
! requirements in conditions enabling the security of their systems and/or 
! data to be ensured and,  more generally, to use and operate it in the 
! same conditions as regards security. 
! 
! The fact that you are presently reading this means that you have had
! knowledge of the CeCILL-B license and that you accept its terms.
!
!!!

      SUBROUTINE ZLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            INFO, KL, KU, LDA, M, N
      DOUBLE PRECISION   CFROM, CTO
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  ZLASCL multiplies the M by N complex matrix A by the real scalar
*  CTO/CFROM.  This is done without over/underflow as long as the final
*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
*  A may be full, upper triangular, lower triangular, upper Hessenberg,
*  or banded.
*
*  Arguments
*  =========
*
*  TYPE    (input) CHARACTER*1
*          TYPE indices the storage type of the input matrix.
*          = 'G':  A is a full matrix.
*          = 'L':  A is a lower triangular matrix.
*          = 'U':  A is an upper triangular matrix.
*          = 'H':  A is an upper Hessenberg matrix.
*          = 'B':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the lower
*                  half stored.
*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the upper
*                  half stored.
*          = 'Z':  A is a band matrix with lower bandwidth KL and upper
*                  bandwidth KU.
*
*  KL      (input) INTEGER
*          The lower bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  KU      (input) INTEGER
*          The upper bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  CFROM   (input) DOUBLE PRECISION
*  CTO     (input) DOUBLE PRECISION
*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*          without over/underflow if the final result CTO*A(I,J)/CFROM
*          can be represented without over/underflow.  CFROM must be
*          nonzero.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
*          storage type.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  INFO    (output) INTEGER
*          0  - successful exit
*          <0 - if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH, DISNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
*
      IF( LSAME( TYPE, 'G' ) ) THEN
         ITYPE = 0
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
         ITYPE = 4
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
         ITYPE = 5
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
         ITYPE = 6
      ELSE
         ITYPE = -1
      END IF
*
      IF( ITYPE.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN
         INFO = -4
      ELSE IF( DISNAN(CTO) ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
     $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
         INFO = -7
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( ITYPE.GE.4 ) THEN
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
            INFO = -2
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
     $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
     $             THEN
            INFO = -3
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
     $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
     $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
            INFO = -9
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLASCL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Get machine parameters
*
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
*
      CFROMC = CFROM
      CTOC = CTO
*
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      IF( CFROM1.EQ.CFROMC ) THEN
!        CFROMC is an inf.  Multiply by a correctly signed zero for
!        finite CTOC, or a NaN if CTOC is infinite.
         MUL = CTOC / CFROMC
         DONE = .TRUE.
         CTO1 = CTOC
      ELSE
         CTO1 = CTOC / BIGNUM
         IF( CTO1.EQ.CTOC ) THEN
!           CTOC is either 0 or an inf.  In both cases, CTOC itself
!           serves as the correct multiplication factor.
            MUL = CTOC
            DONE = .TRUE.
            CFROMC = ONE
         ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
            MUL = SMLNUM
            DONE = .FALSE.
            CFROMC = CFROM1
         ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
            MUL = BIGNUM
            DONE = .FALSE.
            CTOC = CTO1
         ELSE
            MUL = CTOC / CFROMC
            DONE = .TRUE.
         END IF
      END IF
*
      IF( ITYPE.EQ.0 ) THEN
*
*        Full matrix
*
         DO 30 J = 1, N
            DO 20 I = 1, M
               A( I, J ) = A( I, J )*MUL
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( ITYPE.EQ.1 ) THEN
*
*        Lower triangular matrix
*
         DO 50 J = 1, N
            DO 40 I = J, M
               A( I, J ) = A( I, J )*MUL
   40       CONTINUE
   50    CONTINUE
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Upper triangular matrix
*
         DO 70 J = 1, N
            DO 60 I = 1, MIN( J, M )
               A( I, J ) = A( I, J )*MUL
   60       CONTINUE
   70    CONTINUE
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Upper Hessenberg matrix
*
         DO 90 J = 1, N
            DO 80 I = 1, MIN( J+1, M )
               A( I, J ) = A( I, J )*MUL
   80       CONTINUE
   90    CONTINUE
*
      ELSE IF( ITYPE.EQ.4 ) THEN
*
*        Lower half of a symmetric band matrix
*
         K3 = KL + 1
         K4 = N + 1
         DO 110 J = 1, N
            DO 100 I = 1, MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  100       CONTINUE
  110    CONTINUE
*
      ELSE IF( ITYPE.EQ.5 ) THEN
*
*        Upper half of a symmetric band matrix
*
         K1 = KU + 2
         K3 = KU + 1
         DO 130 J = 1, N
            DO 120 I = MAX( K1-J, 1 ), K3
               A( I, J ) = A( I, J )*MUL
  120       CONTINUE
  130    CONTINUE
*
      ELSE IF( ITYPE.EQ.6 ) THEN
*
*        Band matrix
*
         K1 = KL + KU + 2
         K2 = KL + 1
         K3 = 2*KL + KU + 1
         K4 = KL + KU + 1 + M
         DO 150 J = 1, N
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  140       CONTINUE
  150    CONTINUE
*
      END IF
*
      IF( .NOT.DONE )
     $   GO TO 10
*
      RETURN
*
*     End of ZLASCL
*
      END