sqrt03.f 7.66 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
!!!
!
! -- Inria
! -- (C) Copyright 2012
!
! This software is a computer program whose purpose is to process
! Matrices Over Runtime Systems @ Exascale (MORSE). More information
! can be found on the following website: http://www.inria.fr/en/teams/morse.
! 
! This software is governed by the CeCILL-B license under French law and
! abiding by the rules of distribution of free software.  You can  use, 
! modify and/ or redistribute the software under the terms of the CeCILL-B
! license as circulated by CEA, CNRS and INRIA at the following URL
! "http://www.cecill.info". 
! 
! As a counterpart to the access to the source code and  rights to copy,
! modify and redistribute granted by the license, users are provided only
! with a limited warranty  and the software's author,  the holder of the
! economic rights,  and the successive licensors  have only  limited
! liability. 
! 
! In this respect, the user's attention is drawn to the risks associated
! with loading,  using,  modifying and/or developing or reproducing the
! software by the user in light of its specific status of free software,
! that may mean  that it is complicated to manipulate,  and  that  also
! therefore means  that it is reserved for developers  and  experienced
! professionals having in-depth computer knowledge. Users are therefore
! encouraged to load and test the software's suitability as regards their
! requirements in conditions enabling the security of their systems and/or 
! data to be ensured and,  more generally, to use and operate it in the 
! same conditions as regards security. 
! 
! The fact that you are presently reading this means that you have had
! knowledge of the CeCILL-B license and that you accept its terms.
!
!!!

      SUBROUTINE SQRT03( M, N, K, AF, C, CC, Q, LDA, T, WORK, LWORK,
     $                   RWORK, RESULT )
*
      INCLUDE 'morse_fortran.h'
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
      INTEGER            T( 2 )
*     ..
*     .. Array Arguments ..
      REAL               AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), 
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
*
*  SQRT03 compares the results of a call to SORMQR with the results of
*  forming Q explicitly by a call to SORGQR and then performing matrix
*  multiplication by a call to SGEMM.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The order of the orthogonal matrix Q.  M >= 0.
*
*  N       (input) INTEGER
*          The number of rows or columns of the matrix C; C is m-by-n if
*          Q is applied from the left, or n-by-m if Q is applied from
*          the right.  N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          orthogonal matrix Q.  M >= K >= 0.
*
*  AF      (input) REAL array, dimension (LDA,N)
*          Details of the QR factorization of an m-by-n matrix, as
*          returnedby SGEQRF. See SGEQRF for further details.
*
*  C       (workspace) REAL array, dimension (LDA,N)
*
*  CC      (workspace) REAL array, dimension (LDA,N)
*
*  Q       (workspace) REAL array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays AF, C, CC, and Q.
*
*  TAU     (input) REAL array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors corresponding
*          to the QR factorization in AF.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of WORK.  LWORK must be at least M, and should be
*          M*NB, where NB is the blocksize for this environment.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT  (output) REAL array, dimension (4)
*          The test ratios compare two techniques for multiplying a
*          random matrix C by an m-by-m orthogonal matrix Q.
*          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
*          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
*          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
*          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E0 )
      PARAMETER          ( ZERO = 0.0E+0 )
      REAL               ROGUE
      PARAMETER          ( ROGUE = -1.0E+10 )
*     ..
*     .. Local Scalars ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, ISIDE, ITRANS, J, MC, NC
      INTEGER            MORSE_SIDE, MORSE_TRANS
      REAL               CNORM, EPS, RESID
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SLACPY, SLARNV, SLASET, SORGQR, SORMQR
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEED / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
      WORK(1) = ONE
*
*     Copy the first k columns of the factorization to the array Q
*
      IF ( K.EQ.0 ) THEN
          CALL SLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
      ELSE
          CALL SLASET( 'Full', M, M, ZERO, ONE, Q, LDA )
      ENDIF
*
*     Generate the m-by-m matrix Q
*
      SRNAMT = 'SORGQR'
      CALL MORSE_SORGQR( M, M, K, AF, LDA, T, Q, LDA, INFO )
*
      DO 30 ISIDE = 1, 2
         IF( ISIDE.EQ.1 ) THEN
            SIDE = 'L'
            MORSE_SIDE = MORSELEFT
            MC = M
            NC = N
         ELSE
            SIDE = 'R'
            MORSE_SIDE = MORSERIGHT
            MC = N
            NC = M
         END IF
*
*        Generate MC by NC matrix C
*
         DO 10 J = 1, NC
            CALL SLARNV( 2, ISEED, MC, C( 1, J ) )
   10    CONTINUE
         CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK )
         IF( CNORM.EQ.0.0 )
     $      CNORM = ONE
*
         DO 20 ITRANS = 1, 2
            IF( ITRANS.EQ.1 ) THEN
               TRANS = 'N'
               MORSE_TRANS = MORSENOTRANS
            ELSE
               TRANS = 'T'
               MORSE_TRANS = MORSETRANS
            END IF
*
*           Copy C
*
            CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
*
*           Apply Q or Q' to C
*
            SRNAMT = 'SORMQR'
            CALL MORSE_SORMQR( MORSE_SIDE, MORSE_TRANS, MC, NC, K, 
     $                          AF, LDA, T, CC, LDA, INFO )
*
*           Form explicit product and subtract
*
            IF ( K.EQ.0 ) THEN
               CALL SLASET( 'Full', M, M, ZERO, ONE, Q, LDA )
            ENDIF
            IF( LSAME( SIDE, 'L' ) ) THEN
               CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
     $                     LDA, C, LDA, ONE, CC, LDA )
            ELSE
               CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
     $                     LDA, Q, LDA, ONE, CC, LDA )
            END IF
*
*           Compute error in the difference
*
            RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK )
            RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
     $         ( REAL( MAX( 1, M ) )*CNORM*EPS )
*
   20    CONTINUE
   30 CONTINUE
*
      RETURN
*
*     End of SQRT03
*
      END