dlatm1.f 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
!!!
!
! -- Inria
! -- (C) Copyright 2012
!
! This software is a computer program whose purpose is to process
! Matrices Over Runtime Systems @ Exascale (MORSE). More information
! can be found on the following website: http://www.inria.fr/en/teams/morse.
! 
! This software is governed by the CeCILL-B license under French law and
! abiding by the rules of distribution of free software.  You can  use, 
! modify and/ or redistribute the software under the terms of the CeCILL-B
! license as circulated by CEA, CNRS and INRIA at the following URL
! "http://www.cecill.info". 
! 
! As a counterpart to the access to the source code and  rights to copy,
! modify and redistribute granted by the license, users are provided only
! with a limited warranty  and the software's author,  the holder of the
! economic rights,  and the successive licensors  have only  limited
! liability. 
! 
! In this respect, the user's attention is drawn to the risks associated
! with loading,  using,  modifying and/or developing or reproducing the
! software by the user in light of its specific status of free software,
! that may mean  that it is complicated to manipulate,  and  that  also
! therefore means  that it is reserved for developers  and  experienced
! professionals having in-depth computer knowledge. Users are therefore
! encouraged to load and test the software's suitability as regards their
! requirements in conditions enabling the security of their systems and/or 
! data to be ensured and,  more generally, to use and operate it in the 
! same conditions as regards security. 
! 
! The fact that you are presently reading this means that you have had
! knowledge of the CeCILL-B license and that you accept its terms.
!
!!!

      SUBROUTINE DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, INFO )
*
*  -- LAPACK auxiliary test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, INFO, IRSIGN, MODE, N
      DOUBLE PRECISION   COND
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   D( * )
*     ..
*
*  Purpose
*  =======
*
*     DLATM1 computes the entries of D(1..N) as specified by
*     MODE, COND and IRSIGN. IDIST and ISEED determine the generation
*     of random numbers. DLATM1 is called by SLATMR to generate
*     random test matrices for LAPACK programs.
*
*  Arguments
*  =========
*
*  MODE   - INTEGER
*           On entry describes how D is to be computed:
*           MODE = 0 means do not change D.
*           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*           MODE = 5 sets D to random numbers in the range
*                    ( 1/COND , 1 ) such that their logarithms
*                    are uniformly distributed.
*           MODE = 6 set D to random numbers from same distribution
*                    as the rest of the matrix.
*           MODE < 0 has the same meaning as ABS(MODE), except that
*              the order of the elements of D is reversed.
*           Thus if MODE is positive, D has entries ranging from
*              1 to 1/COND, if negative, from 1/COND to 1,
*           Not modified.
*
*  COND   - DOUBLE PRECISION
*           On entry, used as described under MODE above.
*           If used, it must be >= 1. Not modified.
*
*  IRSIGN - INTEGER
*           On entry, if MODE neither -6, 0 nor 6, determines sign of
*           entries of D
*           0 => leave entries of D unchanged
*           1 => multiply each entry of D by 1 or -1 with probability .5
*
*  IDIST  - CHARACTER*1
*           On entry, IDIST specifies the type of distribution to be
*           used to generate a random matrix .
*           1 => UNIFORM( 0, 1 )
*           2 => UNIFORM( -1, 1 )
*           3 => NORMAL( 0, 1 )
*           Not modified.
*
*  ISEED  - INTEGER array, dimension ( 4 )
*           On entry ISEED specifies the seed of the random number
*           generator. The random number generator uses a
*           linear congruential sequence limited to small
*           integers, and so should produce machine independent
*           random numbers. The values of ISEED are changed on
*           exit, and can be used in the next call to DLATM1
*           to continue the same random number sequence.
*           Changed on exit.
*
*  D      - DOUBLE PRECISION array, dimension ( MIN( M , N ) )
*           Array to be computed according to MODE, COND and IRSIGN.
*           May be changed on exit if MODE is nonzero.
*
*  N      - INTEGER
*           Number of entries of D. Not modified.
*
*  INFO   - INTEGER
*            0  => normal termination
*           -1  => if MODE not in range -6 to 6
*           -2  => if MODE neither -6, 0 nor 6, and
*                  IRSIGN neither 0 nor 1
*           -3  => if MODE neither -6, 0 nor 6 and COND less than 1
*           -4  => if MODE equals 6 or -6 and IDIST not in range 1 to 3
*           -7  => if N negative
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = 0.5D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ALPHA, TEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLARAN
      EXTERNAL           DLARAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARNV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, EXP, LOG
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters. Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set INFO if an error
*
      IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
         INFO = -1
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         ( IRSIGN.NE.0 .AND. IRSIGN.NE.1 ) ) THEN
         INFO = -2
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         COND.LT.ONE ) THEN
         INFO = -3
      ELSE IF( ( MODE.EQ.6 .OR. MODE.EQ.-6 ) .AND.
     $         ( IDIST.LT.1 .OR. IDIST.GT.3 ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -7
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLATM1', -INFO )
         RETURN
      END IF
*
*     Compute D according to COND and MODE
*
      IF( MODE.NE.0 ) THEN
         GO TO ( 10, 30, 50, 70, 90, 110 )ABS( MODE )
*
*        One large D value:
*
   10    CONTINUE
         DO 20 I = 1, N
            D( I ) = ONE / COND
   20    CONTINUE
         D( 1 ) = ONE
         GO TO 120
*
*        One small D value:
*
   30    CONTINUE
         DO 40 I = 1, N
            D( I ) = ONE
   40    CONTINUE
         D( N ) = ONE / COND
         GO TO 120
*
*        Exponentially distributed D values:
*
   50    CONTINUE
         D( 1 ) = ONE
         IF( N.GT.1 ) THEN
            ALPHA = COND**( -ONE / DBLE( N-1 ) )
            DO 60 I = 2, N
               D( I ) = ALPHA**( I-1 )
   60       CONTINUE
         END IF
         GO TO 120
*
*        Arithmetically distributed D values:
*
   70    CONTINUE
         D( 1 ) = ONE
         IF( N.GT.1 ) THEN
            TEMP = ONE / COND
            ALPHA = ( ONE-TEMP ) / DBLE( N-1 )
            DO 80 I = 2, N
               D( I ) = DBLE( N-I )*ALPHA + TEMP
   80       CONTINUE
         END IF
         GO TO 120
*
*        Randomly distributed D values on ( 1/COND , 1):
*
   90    CONTINUE
         ALPHA = LOG( ONE / COND )
         DO 100 I = 1, N
            D( I ) = EXP( ALPHA*DLARAN( ISEED ) )
  100    CONTINUE
         GO TO 120
*
*        Randomly distributed D values from IDIST
*
  110    CONTINUE
         CALL DLARNV( IDIST, ISEED, N, D )
*
  120    CONTINUE
*
*        If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign
*        random signs to D
*
         IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $       IRSIGN.EQ.1 ) THEN
            DO 130 I = 1, N
               TEMP = DLARAN( ISEED )
               IF( TEMP.GT.HALF )
     $            D( I ) = -D( I )
  130       CONTINUE
         END IF
*
*        Reverse if MODE < 0
*
         IF( MODE.LT.0 ) THEN
            DO 140 I = 1, N / 2
               TEMP = D( I )
               D( I ) = D( N+1-I )
               D( N+1-I ) = TEMP
  140       CONTINUE
         END IF
*
      END IF
*
      RETURN
*
*     End of DLATM1
*
      END