ctrtri.f 6.95 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
!!!
!
! -- Inria
! -- (C) Copyright 2012
!
! This software is a computer program whose purpose is to process
! Matrices Over Runtime Systems @ Exascale (MORSE). More information
! can be found on the following website: http://www.inria.fr/en/teams/morse.
! 
! This software is governed by the CeCILL-B license under French law and
! abiding by the rules of distribution of free software.  You can  use, 
! modify and/ or redistribute the software under the terms of the CeCILL-B
! license as circulated by CEA, CNRS and INRIA at the following URL
! "http://www.cecill.info". 
! 
! As a counterpart to the access to the source code and  rights to copy,
! modify and redistribute granted by the license, users are provided only
! with a limited warranty  and the software's author,  the holder of the
! economic rights,  and the successive licensors  have only  limited
! liability. 
! 
! In this respect, the user's attention is drawn to the risks associated
! with loading,  using,  modifying and/or developing or reproducing the
! software by the user in light of its specific status of free software,
! that may mean  that it is complicated to manipulate,  and  that  also
! therefore means  that it is reserved for developers  and  experienced
! professionals having in-depth computer knowledge. Users are therefore
! encouraged to load and test the software's suitability as regards their
! requirements in conditions enabling the security of their systems and/or 
! data to be ensured and,  more generally, to use and operate it in the 
! same conditions as regards security. 
! 
! The fact that you are presently reading this means that you have had
! knowledge of the CeCILL-B license and that you accept its terms.
!
!!!

      SUBROUTINE CTRTRI( UPLO, DIAG, N, A, LDA, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CTRTRI computes the inverse of a complex upper or lower triangular
*  matrix A.
*
*  This is the Level 3 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  A is upper triangular;
*          = 'L':  A is lower triangular.
*
*  DIAG    (input) CHARACTER*1
*          = 'N':  A is non-unit triangular;
*          = 'U':  A is unit triangular.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the triangular matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of the array A contains
*          the upper triangular matrix, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of the array A contains
*          the lower triangular matrix, and the strictly upper
*          triangular part of A is not referenced.  If DIAG = 'U', the
*          diagonal elements of A are also not referenced and are
*          assumed to be 1.
*          On exit, the (triangular) inverse of the original matrix, in
*          the same storage format.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
*               matrix is singular and its inverse can not be computed.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, UPPER
      INTEGER            J, JB, NB, NN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           CTRMM, CTRSM, CTRTI2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOUNIT = LSAME( DIAG, 'N' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTRTRI', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check for singularity if non-unit.
*
      IF( NOUNIT ) THEN
         DO 10 INFO = 1, N
            IF( A( INFO, INFO ).EQ.ZERO )
     $         RETURN
   10    CONTINUE
         INFO = 0
      END IF
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1, 'CTRTRI', UPLO // DIAG, N, -1, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
*        Use unblocked code
*
         CALL CTRTI2( UPLO, DIAG, N, A, LDA, INFO )
      ELSE
*
*        Use blocked code
*
         IF( UPPER ) THEN
*
*           Compute inverse of upper triangular matrix
*
            DO 20 J = 1, N, NB
               JB = MIN( NB, N-J+1 )
*
*              Compute rows 1:j-1 of current block column
*
               CALL CTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,
     $                     JB, ONE, A, LDA, A( 1, J ), LDA )
               CALL CTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,
     $                     JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
*
*              Compute inverse of current diagonal block
*
               CALL CTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
   20       CONTINUE
         ELSE
*
*           Compute inverse of lower triangular matrix
*
            NN = ( ( N-1 ) / NB )*NB + 1
            DO 30 J = NN, 1, -NB
               JB = MIN( NB, N-J+1 )
               IF( J+JB.LE.N ) THEN
*
*                 Compute rows j+jb:n of current block column
*
                  CALL CTRMM( 'Left', 'Lower', 'No transpose', DIAG,
     $                        N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
     $                        A( J+JB, J ), LDA )
                  CALL CTRSM( 'Right', 'Lower', 'No transpose', DIAG,
     $                        N-J-JB+1, JB, -ONE, A( J, J ), LDA,
     $                        A( J+JB, J ), LDA )
               END IF
*
*              Compute inverse of current diagonal block
*
               CALL CTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
   30       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CTRTRI
*
      END