zgemm.c 15.7 KB
Newer Older
1 2
/**
 *
3 4
 * @copyright (c) 2009-2014 The University of Tennessee and The University
 *                          of Tennessee Research Foundation.
5 6
 *                          All rights reserved.
 * @copyright (c) 2012-2014 Inria. All rights reserved.
7
 * @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 **/

/**
 *
 * @file zgemm.c
 *
 *  MORSE computational routines
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 2.5.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for MORSE 1.0.0
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @date 2010-11-15
 * @precisions normal z -> s d c
 *
 **/
29
#include "control/common.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/**
 *
 * @defgroup MORSE_Complex64_t
 * @brief Linear algebra routines exposed to users. LAPACK matrix data storage
 *
 */

/**
 *
 * @defgroup MORSE_Complex64_t_Tile
 * @brief Linear algebra routines exposed to users. Tile matrix data storage
 *
 */

/**
 *
 * @defgroup MORSE_Complex64_t_Tile_Async
 * @brief Linear algebra routines exposed to users. Tile matrix data storage,
 *  asynchronous interface.
 *
 */

53 54
/**
 ********************************************************************************
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
 *
 * @ingroup MORSE_Complex64_t
 *
 *  MORSE_zgemm - Performs one of the matrix-matrix operations
 *
 *    \f[ C = \alpha [op( A )\times op( B )] + \beta C \f],
 *
 *  where op( X ) is one of
 *
 *    op( X ) = X  or op( X ) = X' or op( X ) = conjg( X' )
 *
 *  alpha and beta are scalars, and A, B and C  are matrices, with op( A )
 *  an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
 *
 *******************************************************************************
 *
 * @param[in] transA
 *          Specifies whether the matrix A is transposed, not transposed or conjugate transposed:
 *          = MorseNoTrans:   A is not transposed;
 *          = MorseTrans:     A is transposed;
 *          = MorseConjTrans: A is conjugate transposed.
 *
 * @param[in] transB
 *          Specifies whether the matrix B is transposed, not transposed or conjugate transposed:
 *          = MorseNoTrans:   B is not transposed;
 *          = MorseTrans:     B is transposed;
 *          = MorseConjTrans: B is conjugate transposed.
 *
 * @param[in] M
 *          M specifies the number of rows of the matrix op( A ) and of the matrix C. M >= 0.
 *
 * @param[in] N
 *          N specifies the number of columns of the matrix op( B ) and of the matrix C. N >= 0.
 *
 * @param[in] K
 *          K specifies the number of columns of the matrix op( A ) and the number of rows of
 *          the matrix op( B ). K >= 0.
 *
 * @param[in] alpha
 *          alpha specifies the scalar alpha
 *
 * @param[in] A
 *          A is a LDA-by-ka matrix, where ka is K when  transA = MorseNoTrans,
 *          and is  M  otherwise.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,M).
 *
 * @param[in] B
 *          B is a LDB-by-kb matrix, where kb is N when  transB = MorseNoTrans,
 *          and is  K  otherwise.
 *
 * @param[in] LDB
 *          The leading dimension of the array B. LDB >= max(1,N).
 *
 * @param[in] beta
 *          beta specifies the scalar beta
 *
 * @param[in,out] C
 *          C is a LDC-by-N matrix.
 *          On exit, the array is overwritten by the M by N matrix ( alpha*op( A )*op( B ) + beta*C )
 *
 * @param[in] LDC
 *          The leading dimension of the array C. LDC >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa MORSE_zgemm_Tile
 * @sa MORSE_cgemm
 * @sa MORSE_dgemm
 * @sa MORSE_sgemm
 *
 ******************************************************************************/
int MORSE_zgemm(MORSE_enum transA, MORSE_enum transB, int M, int N, int K,
                 MORSE_Complex64_t alpha, MORSE_Complex64_t *A, int LDA,
                                           MORSE_Complex64_t *B, int LDB,
                 MORSE_Complex64_t beta,  MORSE_Complex64_t *C, int LDC)
{
    int NB;
    int Am, An, Bm, Bn;
    int status;
    MORSE_desc_t descA, descB, descC;
    MORSE_context_t *morse;
    MORSE_sequence_t *sequence = NULL;
    MORSE_request_t request = MORSE_REQUEST_INITIALIZER;

    morse = morse_context_self();
    if (morse == NULL) {
        morse_fatal_error("MORSE_zgemm", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }

    /* Check input arguments */
    if ((transA != MorseNoTrans) && (transA != MorseTrans) && (transA != MorseConjTrans)) {
        morse_error("MORSE_zgemm", "illegal value of transA");
        return -1;
    }
    if ((transB != MorseNoTrans) && (transB != MorseTrans) && (transB != MorseConjTrans)) {
        morse_error("MORSE_zgemm", "illegal value of transB");
        return -2;
    }
161
    if ( transA == MorseNoTrans ) {
162 163 164 165
        Am = M; An = K;
    } else {
        Am = K; An = M;
    }
166
    if ( transB == MorseNoTrans ) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        Bm = K; Bn = N;
    } else {
        Bm = N; Bn = K;
    }
    if (M < 0) {
        morse_error("MORSE_zgemm", "illegal value of M");
        return -3;
    }
    if (N < 0) {
        morse_error("MORSE_zgemm", "illegal value of N");
        return -4;
    }
    if (K < 0) {
        morse_error("MORSE_zgemm", "illegal value of N");
        return -5;
    }
183
    if (LDA < chameleon_max(1, Am)) {
184 185 186
        morse_error("MORSE_zgemm", "illegal value of LDA");
        return -8;
    }
187
    if (LDB < chameleon_max(1, Bm)) {
188 189 190
        morse_error("MORSE_zgemm", "illegal value of LDB");
        return -10;
    }
191
    if (LDC < chameleon_max(1, M)) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        morse_error("MORSE_zgemm", "illegal value of LDC");
        return -13;
    }

    /* Quick return */
    if (M == 0 || N == 0 ||
        ((alpha == (MORSE_Complex64_t)0.0 || K == 0) && beta == (MORSE_Complex64_t)1.0))
        return MORSE_SUCCESS;

    /* Tune NB depending on M, N & NRHS; Set NBNBSIZE */
    status = morse_tune(MORSE_FUNC_ZGEMM, M, N, 0);
    if (status != MORSE_SUCCESS) {
        morse_error("MORSE_zgemm", "morse_tune() failed");
        return status;
    }

    /* Set MT & NT & KT */
    NB = MORSE_NB;

    morse_sequence_create(morse, &sequence);

/*    if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
        morse_zooplap2tile( descA, A, NB, NB, LDA, An, 0, 0, Am, An, sequence, &request,
                             morse_desc_mat_free(&(descA)) );
        morse_zooplap2tile( descB, B, NB, NB, LDB, Bn, 0, 0, Bm, Bn, sequence, &request,
                             morse_desc_mat_free(&(descA)); morse_desc_mat_free(&(descB)));
        morse_zooplap2tile( descC, C, NB, NB, LDC, N,  0, 0, M,  N,  sequence, &request,
                             morse_desc_mat_free(&(descA)); morse_desc_mat_free(&(descB)); morse_desc_mat_free(&(descC)));
/*    } else {*/
/*        morse_ziplap2tile( descA, A, NB, NB, LDA, An, 0, 0, Am, An, */
/*                            sequence, &request);*/
/*        morse_ziplap2tile( descB, B, NB, NB, LDB, Bn, 0, 0, Bm, Bn, */
/*                            sequence, &request);*/
/*        morse_ziplap2tile( descC, C, NB, NB, LDC, N,  0, 0, M,  N,  */
/*                            sequence, &request);*/
/*    }*/

    /* Call the tile interface */
    MORSE_zgemm_Tile_Async(
        transA, transB, alpha, &descA, &descB, beta, &descC, sequence, &request);

/*    if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
        morse_zooptile2lap(descC, C, NB, NB, LDC, N,  sequence, &request);
235
        morse_sequence_wait(morse, sequence);
236 237 238 239 240 241 242
        morse_desc_mat_free(&descA);
        morse_desc_mat_free(&descB);
        morse_desc_mat_free(&descC);
/*    } else {*/
/*        morse_ziptile2lap( descA, A, NB, NB, LDA, An,  sequence, &request);*/
/*        morse_ziptile2lap( descB, B, NB, NB, LDB, Bn,  sequence, &request);*/
/*        morse_ziptile2lap( descC, C, NB, NB, LDC, N,   sequence, &request);*/
243
/*        morse_sequence_wait(morse, sequence);*/
244 245 246 247 248 249 250
/*    }*/

    status = sequence->status;
    morse_sequence_destroy(morse, sequence);
    return status;
}

251 252
/**
 ********************************************************************************
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
 *
 * @ingroup MORSE_Complex64_t_Tile
 *
 *  MORSE_zgemm_Tile - Performs matrix multiplication.
 *  Tile equivalent of MORSE_zgemm().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in] transA
 *          Specifies whether the matrix A is transposed, not transposed or conjugate transposed:
 *          = MorseNoTrans:   A is not transposed;
 *          = MorseTrans:     A is transposed;
 *          = MorseConjTrans: A is conjugate transposed.
 *
 * @param[in] transB
 *          Specifies whether the matrix B is transposed, not transposed or conjugate transposed:
 *          = MorseNoTrans:   B is not transposed;
 *          = MorseTrans:     B is transposed;
 *          = MorseConjTrans: B is conjugate transposed.
 *
 * @param[in] alpha
 *          alpha specifies the scalar alpha
 *
 * @param[in] A
 *          A is a LDA-by-ka matrix, where ka is K when  transA = MorseNoTrans,
 *          and is  M  otherwise.
 *
 * @param[in] B
 *          B is a LDB-by-kb matrix, where kb is N when  transB = MorseNoTrans,
 *          and is  K  otherwise.
 *
 * @param[in] beta
 *          beta specifies the scalar beta
 *
 * @param[in,out] C
 *          C is a LDC-by-N matrix.
 *          On exit, the array is overwritten by the M by N matrix ( alpha*op( A )*op( B ) + beta*C )
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa MORSE_zgemm
 * @sa MORSE_zgemm_Tile_Async
 * @sa MORSE_cgemm_Tile
 * @sa MORSE_dgemm_Tile
 * @sa MORSE_sgemm_Tile
 *
 ******************************************************************************/
int MORSE_zgemm_Tile(MORSE_enum transA, MORSE_enum transB,
                     MORSE_Complex64_t alpha, MORSE_desc_t *A, MORSE_desc_t *B,
                     MORSE_Complex64_t beta,  MORSE_desc_t *C)
{
    MORSE_context_t *morse;
    MORSE_sequence_t *sequence = NULL;
    MORSE_request_t request = MORSE_REQUEST_INITIALIZER;
    int status;

    morse = morse_context_self();
    if (morse == NULL) {
        morse_fatal_error("MORSE_zgemm_Tile", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }
    morse_sequence_create(morse, &sequence);
    MORSE_zgemm_Tile_Async(transA, transB, alpha, A, B, beta, C, sequence, &request);
324 325 326
    RUNTIME_desc_getoncpu_async( A, sequence );
    RUNTIME_desc_getoncpu_async( B, sequence );
    RUNTIME_desc_getoncpu_async( C, sequence );
Mathieu Faverge's avatar
Mathieu Faverge committed
327
    morse_sequence_wait(morse, sequence);
328 329 330 331 332 333

    status = sequence->status;
    morse_sequence_destroy(morse, sequence);
    return status;
}

334 335
/**
 ********************************************************************************
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
 *
 * @ingroup MORSE_Complex64_t_Tile_Async
 *
 *  MORSE_zgemm_Tile_Async - Performs matrix multiplication.
 *  Non-blocking equivalent of MORSE_zgemm_Tile().
 *  May return before the computation is finished.
 *  Allows for pipelining of operations at runtime.
 *
 *******************************************************************************
 *
 * @param[in] sequence
 *          Identifies the sequence of function calls that this call belongs to
 *          (for completion checks and exception handling purposes).
 *
 * @param[out] request
 *          Identifies this function call (for exception handling purposes).
 *
 *******************************************************************************
 *
 * @sa MORSE_zgemm
 * @sa MORSE_zgemm_Tile
 * @sa MORSE_cgemm_Tile_Async
 * @sa MORSE_dgemm_Tile_Async
 * @sa MORSE_sgemm_Tile_Async
 *
 ******************************************************************************/
int MORSE_zgemm_Tile_Async(MORSE_enum transA, MORSE_enum transB,
                            MORSE_Complex64_t alpha, MORSE_desc_t *A, MORSE_desc_t *B,
                            MORSE_Complex64_t beta,  MORSE_desc_t *C,
                            MORSE_sequence_t *sequence, MORSE_request_t *request)
{
    MORSE_context_t *morse;
    int M, N, K;
    int Am, An, Ai, Aj, Amb, Anb;
    int Bm, Bn, Bi, Bj, Bmb, Bnb;

    morse = morse_context_self();
    if (morse == NULL) {
        morse_fatal_error("MORSE_zgemm_Tile_Async", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }
    if (sequence == NULL) {
        morse_fatal_error("MORSE_zgemm_Tile_Async", "NULL sequence");
        return MORSE_ERR_UNALLOCATED;
    }
    if (request == NULL) {
        morse_fatal_error("MORSE_zgemm_Tile_Async", "NULL request");
        return MORSE_ERR_UNALLOCATED;
    }
    /* Check sequence status */
    if (sequence->status == MORSE_SUCCESS)
        request->status = MORSE_SUCCESS;
    else
        return morse_request_fail(sequence, request, MORSE_ERR_SEQUENCE_FLUSHED);

    /* Check descriptors for correctness */
    if (morse_desc_check(A) != MORSE_SUCCESS) {
        morse_error("MORSE_zgemm_Tile_Async", "invalid first descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if (morse_desc_check(B) != MORSE_SUCCESS) {
        morse_error("MORSE_zgemm_Tile_Async", "invalid second descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if (morse_desc_check(C) != MORSE_SUCCESS) {
        morse_error("MORSE_zgemm_Tile_Async", "invalid third descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    /* Check input arguments */
    if ((transA != MorseNoTrans) && (transA != MorseTrans) && (transA != MorseConjTrans)) {
        morse_error("MORSE_zgemm_Tile_Async", "illegal value of transA");
        return morse_request_fail(sequence, request, -1);
    }
    if ((transB != MorseNoTrans) && (transB != MorseTrans) && (transB != MorseConjTrans)) {
        morse_error("MORSE_zgemm_Tile_Async", "illegal value of transB");
        return morse_request_fail(sequence, request, -2);
    }

    if ( transA == MorseNoTrans ) {
        Am  = A->m;
        An  = A->n;
        Amb = A->mb;
        Anb = A->nb;
        Ai  = A->i;
        Aj  = A->j;
    } else {
        Am  = A->n;
        An  = A->m;
        Amb = A->nb;
        Anb = A->mb;
        Ai  = A->j;
        Aj  = A->i;
    }

    if ( transB == MorseNoTrans ) {
        Bm  = B->m;
        Bn  = B->n;
        Bmb = B->mb;
        Bnb = B->nb;
        Bi  = B->i;
        Bj  = B->j;
    } else {
        Bm  = B->n;
        Bn  = B->m;
        Bmb = B->nb;
        Bnb = B->mb;
        Bi  = B->j;
        Bj  = B->i;
    }

    if ( (Amb != C->mb) || (Anb != Bmb) || (Bnb != C->nb) ) {
        morse_error("MORSE_zgemm_Tile_Async", "tile sizes have to match");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if ( (Am != C->m) || (An != Bm) || (Bn != C->n) ) {
        morse_error("MORSE_zgemm_Tile_Async", "sizes of matrices have to match");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if ( (Ai != C->i) || (Aj != Bi) || (Bj != C->j) ) {
        morse_error("MORSE_zgemm_Tile_Async", "start indexes have to match");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }

    M = C->m;
    N = C->n;
    K = An;

    /* Quick return */
    if (M == 0 || N == 0 ||
        ((alpha == (MORSE_Complex64_t)0.0 || K == 0) && beta == (MORSE_Complex64_t)1.0))
        return MORSE_SUCCESS;

    morse_pzgemm(transA, transB, alpha, A, B, beta, C, sequence, request);

    return MORSE_SUCCESS;
}