/** * * @copyright (c) 2009-2014 The University of Tennessee and The University * of Tennessee Research Foundation. * All rights reserved. * @copyright (c) 2012-2014 Inria. All rights reserved. * @copyright (c) 2012-2014 IPB. All rights reserved. * **/ /** * * @file codelet_zgeqrt.c * * MORSE codelets kernel * MORSE is a software package provided by Univ. of Tennessee, * Univ. of California Berkeley and Univ. of Colorado Denver * * @version 2.5.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for MORSE 1.0.0 * @author Hatem Ltaief * @author Jakub Kurzak * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2010-11-15 * @precisions normal z -> c d s * **/ #include #include "morse_starpu.h" #include "codelet_z.h" /** * * @ingroup CORE_MORSE_Complex64_t * * CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A: * A = Q * R. * * The tile Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(M,N). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), * and tau in TAU(i). * ******************************************************************************* * * @param[in] M * The number of rows of the tile A. M >= 0. * * @param[in] N * The number of columns of the tile A. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A * On entry, the M-by-N tile A. * On exit, the elements on and above the diagonal of the array * contain the min(M,N)-by-N upper trapezoidal tile R (R is * upper triangular if M >= N); the elements below the diagonal, * with the array TAU, represent the unitary tile Q as a * product of elementary reflectors (see Further Details). * * @param[in] LDA * The leading dimension of the array A. LDA >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[out] WORK * ******************************************************************************* * * @return * \retval MORSE_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * ******************************************************************************/ void MORSE_TASK_zgeqrt(MORSE_option_t *options, int m, int n, int ib, int nb, MORSE_desc_t *A, int Am, int An, int lda, MORSE_desc_t *T, int Tm, int Tn, int ldt) { (void)nb; struct starpu_codelet *codelet = &cl_zgeqrt; void (*callback)(void*) = options->profiling ? cl_zgeqrt_callback : NULL; MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host); if ( morse_desc_islocal( A, Am, An ) || morse_desc_islocal( T, Tm, Tn ) ) { starpu_insert_task( codelet, STARPU_VALUE, &m, sizeof(int), STARPU_VALUE, &n, sizeof(int), STARPU_VALUE, &ib, sizeof(int), STARPU_RW, RTBLKADDR(A, MORSE_Complex64_t, Am, An), STARPU_VALUE, &lda, sizeof(int), STARPU_W, RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn), STARPU_VALUE, &ldt, sizeof(int), /* max( nb * (ib+1), ib * (ib+nb) ) */ STARPU_SCRATCH, options->ws_worker, /* ib * (m+3*ib) + max(m,n) */ STARPU_VALUE, &h_work, sizeof(MORSE_starpu_ws_t *), STARPU_PRIORITY, options->priority, STARPU_CALLBACK, callback, 0); } } static void cl_zgeqrt_cpu_func(void *descr[], void *cl_arg) { MORSE_starpu_ws_t *h_work; int m; int n; int ib; MORSE_Complex64_t *A; int lda; MORSE_Complex64_t *T; int ldt; MORSE_Complex64_t *TAU, *WORK; A = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]); T = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]); TAU = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]); /* max(m,n) + n * ib */ starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldt, &h_work); WORK = TAU + max( m, n ); CORE_zgeqrt(m, n, ib, A, lda, T, ldt, TAU, WORK); } #if defined(CHAMELEON_USE_MAGMA) magma_int_t magma_zgemerge_gpu(magma_side_t side, magma_diag_t diag, magma_int_t M, magma_int_t N, magmaDoubleComplex *A, magma_int_t LDA, magmaDoubleComplex *B, magma_int_t LDB) { int i, j; magmaDoubleComplex *cola, *colb; if (M < 0) { return -1; } if (N < 0) { return -2; } if ( (LDA < max(1,M)) && (M > 0) ) { return -5; } if ( (LDB < max(1,M)) && (M > 0) ) { return -7; } if (side == MagmaLeft){ for(i=0; i=n) ib = min(n-i, nb); rows = m-i; if (i>0){ /* copy panel of A from device to host */ cublasGetMatrix(m, ib, sizeof(magmaDoubleComplex), da_ref(0, i), ldda, v, ldv); /* Apply H' to A(i:m,i+2*ib:n) from the left */ cols = n-old_i-2*old_ib; if (cols > 0){ magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, m-old_i, cols, old_ib, da_ref(old_i, old_i), ldda, dt_ref(0,old_i), lddt, da_ref(old_i, old_i+2*old_ib), ldda, dwork, cols); } /* copy the upper diag tile into d_A */ magma_zgemerge_gpu(MagmaLeft, MagmaUnit, old_ib, old_ib, dd, ldd, da_ref(old_i, old_i), ldda); } /* Form the triangular factor of the block reflector on the host H = H(i) H(i+1) . . . H(i+ib-1) */ CORE_zgeqrt(rows, ib, ib, (double _Complex*) v_ref(i,0), ldv, (double _Complex*) t_ref(0,0), ldt, (double _Complex*) tau+i, (double _Complex*) hwork); if ( i + ib < n ){ /* put 0s in the upper triangular part of a panel (and 1s on the diagonal); copy the upper triangular in d */ CORE_zgesplit(MorseLeft, MorseUnit, min(rows,ib), ib, (double _Complex*) v_ref(i,0), ldv, (double _Complex*) d, ldd); /* copy from host to device a tile diag */ cublasSetMatrix( min(rows,ib), ib, sizeof(magmaDoubleComplex), d, ldd, dd, ldd ); } /* Send the triangular factor T to the GPU */ cublasSetMatrix( ib, ib, sizeof(magmaDoubleComplex), t_ref(0,0), ldt, dt_ref(0,i), lddt ); /* A panel (with zeros in upper tri of its diag) is ready to be used in input of zlarfb_gpu: we send the panel to the gpu */ cublasSetMatrix( rows, ib, sizeof(magmaDoubleComplex), v_ref(i,0), ldv, da_ref(i,i), ldda ); if (i + ib < n) { if (i+2*ib < n){ cols = ib; } else{ cols = n-i-ib; } /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */ magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, cols, ib, da_ref(i,i), ldda, dt_ref(0,i), lddt, da_ref(i,i+ib), ldda, dwork, cols); old_i = i; old_ib = ib; if (i+nb>=k){ /* Apply H' to A(i:m,i+2*ib:n) from the left */ cols = n-old_i-2*old_ib; if (cols > 0){ magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, cols, old_ib, da_ref(old_i, old_i), ldda, dt_ref(0,old_i), lddt, da_ref(old_i, old_i+2*old_ib), ldda, dwork, cols); } /* copy the upper diag tile into d_A */ magma_zgemerge_gpu(MagmaLeft, MagmaUnit, old_ib, old_ib, dd, ldd, da_ref(old_i, old_i), ldda); } } } #undef da_ref #undef v_ref #undef dt_ref #undef t_ref return MAGMA_SUCCESS; } /* magma_zgeqrt_gpu */ static void cl_zgeqrt_cuda_func(void *descr[], void *cl_arg) { MORSE_starpu_ws_t *h_work; int m; int n; int ib; cuDoubleComplex *h_A, *h_T, *h_D, *h_W, *h_TAU; cuDoubleComplex *d_A, *d_T, *d_D, *d_W; int lda, ldt; starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldt, &h_work); /* Gather pointer to data on device */ d_A = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]); d_T = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]); d_W = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]); /* ib*n + ib * ib*/ d_D = d_W + ib*n; /* scratch data on host */ /* m*ib + ib*ib + max(m,n) + ib*ib + ib*ib */ h_A = (cuDoubleComplex*)RUNTIME_starpu_ws_getlocal(h_work); /* Gather pointer to scratch data on host */ h_T = h_A + m*ib; h_TAU = h_T + ib*ib; h_W = h_TAU + max(m,n); h_D = h_W + ib*ib; magma_zgeqrt_gpu( m, n, ib, d_A, lda, h_A, m, d_T, ldt, h_T, ib, d_D, h_D, ib, h_TAU, h_W, d_W); cudaThreadSynchronize(); } #endif /* * Codelet definition */ #if defined(CHAMELEON_USE_MAGMA) || defined(CHAMELEON_SIMULATION) CODELETS(zgeqrt, 3, cl_zgeqrt_cpu_func, cl_zgeqrt_cuda_func, 0) #else CODELETS_CPU(zgeqrt, 3, cl_zgeqrt_cpu_func) #endif