/** * * @file openmp/codelet_zgeqrt.c * * @copyright 2009-2014 The University of Tennessee and The University of * Tennessee Research Foundation. All rights reserved. * @copyright 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** * * @brief Chameleon zgeqrt StarPU codelet * * @version 1.0.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for CHAMELEON 1.0.0 * @author Hatem Ltaief * @author Jakub Kurzak * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @author Philippe Virouleau * @date 2018-06-20 * @precisions normal z -> c d s * */ #include "chameleon_openmp.h" #include "chameleon/tasks_z.h" #include "coreblas/coreblas_z.h" /** * * @ingroup CORE_CHAMELEON_Complex64_t * * CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A: * A = Q * R. * * The tile Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(M,N). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), * and tau in TAU(i). * ******************************************************************************* * * @param[in] M * The number of rows of the tile A. M >= 0. * * @param[in] N * The number of columns of the tile A. N >= 0. * * @param[in] IB * The inner-blocking size. IB >= 0. * * @param[in,out] A * On entry, the M-by-N tile A. * On exit, the elements on and above the diagonal of the array * contain the min(M,N)-by-N upper trapezoidal tile R (R is * upper triangular if M >= N); the elements below the diagonal, * with the array TAU, represent the unitary tile Q as a * product of elementary reflectors (see Further Details). * * @param[in] LDA * The leading dimension of the array A. LDA >= max(1,M). * * @param[out] T * The IB-by-N triangular factor T of the block reflector. * T is upper triangular by block (economic storage); * The rest of the array is not referenced. * * @param[in] LDT * The leading dimension of the array T. LDT >= IB. * * @param[out] TAU * The scalar factors of the elementary reflectors (see Further * Details). * * @param[out] WORK * ******************************************************************************* * * @return * \retval CHAMELEON_SUCCESS successful exit * \retval <0 if -i, the i-th argument had an illegal value * */ void INSERT_TASK_zgeqrt(const RUNTIME_option_t *options, int m, int n, int ib, int nb, const CHAM_desc_t *A, int Am, int An, int lda, const CHAM_desc_t *T, int Tm, int Tn, int ldt) { CHAMELEON_Complex64_t *ptrA = RTBLKADDR(A, CHAMELEON_Complex64_t, Am, An); CHAMELEON_Complex64_t *ptrT = RTBLKADDR(T, CHAMELEON_Complex64_t, Tm, Tn); #pragma omp task firstprivate(m, n, ib, ptrA, lda, ptrT, ldt) depend(inout:ptrA[0]) depend(inout:ptrT[0]) { CHAMELEON_Complex64_t TAU[options->ws_wsize]; CHAMELEON_Complex64_t *work = TAU + chameleon_max(m, n); CORE_zgeqrt(m, n, ib, ptrA, lda, ptrT, ldt, TAU, work); } }