/** * * @file pzgelqfrh.c * * @copyright 2009-2014 The University of Tennessee and The University of * Tennessee Research Foundation. All rights reserved. * @copyright 2012-2018 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, * Univ. Bordeaux. All rights reserved. * *** * * @brief Chameleon zgelqfrh parallel algorithm * * @version 1.0.0 * @comment This file has been automatically generated * from Plasma 2.5.0 for CHAMELEON 1.0.0 * @author Jakub Kurzak * @author Hatem Ltaief * @author Dulceneia Becker * @author Mathieu Faverge * @author Emmanuel Agullo * @author Cedric Castagnede * @date 2010-11-15 * @precisions normal z -> s d c * */ #include "control/common.h" #define A(m,n) A, (m), (n) #define T(m,n) T, (m), (n) #define T2(m,n) T, (m), (n)+A->nt #define D(m,n) D, (m), (n) /* * Parallel tile LQ factorization (reduction Householder) - dynamic scheduling */ void chameleon_pzgelqfrh( int genD, int BS, CHAM_desc_t *A, CHAM_desc_t *T, CHAM_desc_t *D, RUNTIME_sequence_t *sequence, RUNTIME_request_t *request ) { CHAM_context_t *chamctxt; RUNTIME_option_t options; size_t ws_worker = 0; size_t ws_host = 0; int k, m, n; int K, N, RD; int ldak, ldam; int tempkmin, tempkm, tempNn, tempnn, tempmm, tempNRDn; int ib; chamctxt = chameleon_context_self(); if (sequence->status != CHAMELEON_SUCCESS) return; RUNTIME_options_init(&options, chamctxt, sequence, request); ib = CHAMELEON_IB; if ( D == NULL ) { D = A; genD = 0; } /* * zgelqt = A->nb * (ib+1) * zunmlq = A->nb * ib * ztplqt = A->nb * (ib+1) * ztpmlq = A->nb * ib */ ws_worker = A->nb * (ib+1); /* Allocation of temporary (scratch) working space */ #if defined(CHAMELEON_USE_CUDA) /* Worker space * * zunmqr = A->nb * ib * ztpmqr = 2 * A->nb * ib */ ws_worker = chameleon_max( ws_worker, ib * A->nb * 2 ); #endif ws_worker *= sizeof(CHAMELEON_Complex64_t); ws_host *= sizeof(CHAMELEON_Complex64_t); RUNTIME_options_ws_alloc( &options, ws_worker, ws_host ); K = chameleon_min(A->mt, A->nt); /* The number of the factorization */ for (k = 0; k < K; k++) { RUNTIME_iteration_push(chamctxt, k); tempkm = k == A->mt-1 ? A->m-k*A->mb : A->mb; ldak = BLKLDD(A, k); for (N = k; N < A->nt; N += BS) { tempNn = N == A->nt-1 ? A->n-N*A->nb : A->nb; tempkmin = chameleon_min(tempkm, tempNn); INSERT_TASK_zgelqt( &options, tempkm, tempNn, ib, T->nb, A(k, N), ldak, T(k, N), T->mb); if ( genD ) { INSERT_TASK_zlacpy( &options, ChamUpper, tempkm, tempNn, A->nb, A(k, N), ldak, D(k, N), ldak ); #if defined(CHAMELEON_USE_CUDA) INSERT_TASK_zlaset( &options, ChamLower, tempkm, tempNn, 0., 1., D(k, N), ldak ); #endif } for (m = k+1; m < A->mt; m++) { tempmm = m == A->mt-1 ? A->m-m*A->mb : A->mb; ldam = BLKLDD(A, m); INSERT_TASK_zunmlq( &options, ChamRight, ChamConjTrans, tempmm, tempNn, tempkmin, ib, T->nb, D(k, N), ldak, T(k, N), T->mb, A(m, N), ldam); } RUNTIME_data_flush( sequence, D(k, N) ); RUNTIME_data_flush( sequence, T(k, N) ); for (n = N+1; n < chameleon_min(N+BS, A->nt); n++) { tempnn = n == A->nt-1 ? A->n-n*A->nb : A->nb; RUNTIME_data_migrate( sequence, A(k, N), A->get_rankof( A, k, n ) ); /* TS kernel */ INSERT_TASK_ztplqt( &options, tempkm, tempnn, 0, ib, T->nb, A(k, N), ldak, A(k, n), ldak, T(k, n), T->mb); for (m = k+1; m < A->mt; m++) { tempmm = m == A->mt-1 ? A->m-m*A->mb : A->mb; ldam = BLKLDD(A, m); RUNTIME_data_migrate( sequence, A(m, N), A->get_rankof( A, m, n ) ); INSERT_TASK_ztpmlqt( &options, ChamRight, ChamConjTrans, tempmm, tempnn, tempkm, 0, ib, T->nb, A(k, n), ldak, T(k, n), T->mb, A(m, N), ldam, A(m, n), ldam); } RUNTIME_data_flush( sequence, A(k, n) ); RUNTIME_data_flush( sequence, T(k, n) ); } } for (RD = BS; RD < A->nt-k; RD *= 2) { for (N = k; N+RD < A->nt; N += 2*RD) { tempNRDn = N+RD == A->nt-1 ? A->n-(N+RD)*A->nb : A->nb; RUNTIME_data_migrate( sequence, A(k, N), A->get_rankof( A, k, N+RD ) ); RUNTIME_data_migrate( sequence, A(k, N+RD), A->get_rankof( A, k, N+RD ) ); /* TT kernel */ INSERT_TASK_ztplqt( &options, tempkm, tempNRDn, chameleon_min(tempNRDn, tempkm), ib, T->nb, A (k, N ), ldak, A (k, N+RD), ldak, T2(k, N+RD), T->mb); for (m = k+1; m < A->mt; m++) { tempmm = m == A->mt-1 ? A->m-m*A->mb : A->mb; ldam = BLKLDD(A, m ); RUNTIME_data_migrate( sequence, A(m, N), A->get_rankof( A, m, N+RD ) ); RUNTIME_data_migrate( sequence, A(m, N+RD), A->get_rankof( A, m, N+RD ) ); INSERT_TASK_ztpmlqt( &options, ChamRight, ChamConjTrans, tempmm, tempNRDn, tempkm, tempNRDn, ib, T->nb, A (k, N+RD), ldak, T2(k, N+RD), T->mb, A (m, N ), ldam, A (m, N+RD), ldam); } RUNTIME_data_flush( sequence, A (k, N+RD) ); RUNTIME_data_flush( sequence, T2(k, N+RD) ); } } /* Restore the original location of the tiles */ for (m = k; m < A->mt; m++) { RUNTIME_data_migrate( sequence, A(m, k), A->get_rankof( A, m, k ) ); } RUNTIME_iteration_pop(chamctxt); } RUNTIME_options_ws_free(&options); RUNTIME_options_finalize(&options, chamctxt); (void)D; }