ztpqrt.c 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/**
 *
 * @copyright (c) 2009-2016 The University of Tennessee and The University
 *                          of Tennessee Research Foundation.
 *                          All rights reserved.
 * @copyright (c) 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
 *                          Univ. Bordeaux. All rights reserved.
 *
 **/

/**
 *
 * @file ztpqrt.c
 *
 *  MORSE computational routines
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 0.9.0
 * @author Mathieu Faverge
 * @date 2016-12-15
 * @precisions normal z -> s d c
 *
 **/
#include "control/common.h"

/**
 ******************************************************************************
 *
 * @ingroup MORSE_Complex64_t
 *
 *  MORSE_ztpqrt - Computes a blocked QR factorization of a
 *  "triangular-pentagonal" matrix C, which is composed of a triangular block A
 *  and a pentagonal block B, using the compact representation for Q.
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the matrix B. M >= 0.
 *
 * @param[in] N
 *          The number of columns of the matrix B, and the order of the matrix
 *          A. N >= 0.
 *
 * @param[in] L
 *          The number of rows of the upper trapezoidal part of B.
 *          MIN(M,N) >= L >= 0.  See Further Details.
 *
 * @param[in,out] A
 *          On entry, the upper triangular N-by-N matrix A.
 *          On exit, the elements on and above the diagonal of the array
 *          contain the upper triangular matrix R.
 *
 * @param[in] LDA
 *          The leading dimension of the array A. LDA >= max(1,N).
 *
 * @param[in,out] B
 *          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
 *          are rectangular, and the last L rows are upper trapezoidal.
 *          On exit, B contains the pentagonal matrix V.  See Further Details.
 *
 * @param[in] LDB
 *          The leading dimension of the array B.  LDB >= max(1,M).
 *
 * @param[out] descT
 *          On exit, auxiliary factorization data, required by MORSE_zgeqrs to
 *          solve the system of equations, or by any function to apply the Q.
 *
 * @par Further Details:
 * =====================
 *
 *  The input matrix C is a (N+M)-by-N matrix
 *
 *               C = [ A ]
 *                   [ B ]
 *
 *  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
 *  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
 *  upper trapezoidal matrix B2:
 *
 *               B = [ B1 ]  <- (M-L)-by-N rectangular
 *                   [ B2 ]  <-     L-by-N upper trapezoidal.
 *
 *  The upper trapezoidal matrix B2 consists of the first L rows of a
 *  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
 *  B is rectangular M-by-N; if M=L=N, B is upper triangular.
 *
 *  The matrix W stores the elementary reflectors H(i) in the i-th column
 *  below the diagonal (of A) in the (N+M)-by-N input matrix C
 *
 *               C = [ A ]  <- upper triangular N-by-N
 *                   [ B ]  <- M-by-N pentagonal
 *
 *  so that W can be represented as
 *
 *               W = [ I ]  <- identity, N-by-N
 *                   [ V ]  <- M-by-N, same form as B.
 *
 *  Thus, all of information needed for W is contained on exit in B, which
 *  we call V above.  Note that V has the same form as B; that is,
 *
 *               V = [ V1 ] <- (M-L)-by-N rectangular
 *                   [ V2 ] <-     L-by-N upper trapezoidal.
 *
 *  The columns of V represent the vectors which define the H(i)'s.
 *
 *  The number of blocks is B = ceiling(N/NB), where each
 *  block is of order NB except for the last block, which is of order
 *  IB = N - (B-1)*NB.  For each of the B blocks, a upper triangular block
 *  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
 *  for the last block) T's are stored in the NB-by-N matrix T as
 *
 *               T = [T1 T2 ... TB].
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 *******************************************************************************
 *
 * @sa MORSE_ztpqrt_Tile
 * @sa MORSE_ztpqrt_Tile_Async
 * @sa MORSE_ctpqrt
 * @sa MORSE_dtpqrt
 * @sa MORSE_stpqrt
 * @sa MORSE_zgeqrs
 *
 ******************************************************************************/
int MORSE_ztpqrt( int M, int N, int L,
                  MORSE_Complex64_t *A, int LDA,
                  MORSE_Complex64_t *B, int LDB,
                  MORSE_desc_t *descT )
{
    int NB;
    int status;
    MORSE_context_t *morse;
    MORSE_sequence_t *sequence = NULL;
    MORSE_request_t request = MORSE_REQUEST_INITIALIZER;
    MORSE_desc_t descA, descB;
    int minMN = min( M, N );

    morse = morse_context_self();
    if (morse == NULL) {
        morse_fatal_error("MORSE_ztpqrt", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }

    /* Check input arguments */
    if (M < 0) {
        morse_error("MORSE_ztpqrt", "illegal value of M");
        return -1;
    }
    if (N < 0) {
        morse_error("MORSE_ztpqrt", "illegal value of N");
        return -2;
    }
    if ((L < 0) || ((L > minMN) && (minMN > 0))) {
        morse_error("MORSE_ztpqrt", "illegal value of N");
        return -3;
    }
    if (LDA < max(1, N)) {
        morse_error("MORSE_ztpqrt", "illegal value of LDA");
        return -5;
    }
    if (LDB < max(1, M)) {
        morse_error("MORSE_ztpqrt", "illegal value of LDB");
        return -7;
    }

    /* Quick return */
    if (minMN == 0)
        return MORSE_SUCCESS;

    /* Tune NB & IB depending on M, N & NRHS; Set NBNBSIZE */
    status = morse_tune(MORSE_FUNC_ZGELS, M, N, 0);
    if (status != MORSE_SUCCESS) {
        morse_error("MORSE_ztpqrt", "morse_tune() failed");
        return status;
    }

    /* Set NT */
    NB = MORSE_NB;

    morse_sequence_create(morse, &sequence);

/*    if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
        morse_zooplap2tile( descA, A, NB, NB, LDA, N, 0, 0, N, N, sequence, &request,
                            morse_desc_mat_free(&(descA)) );
        morse_zooplap2tile( descB, B, NB, NB, LDB, N, 0, 0, M, N, sequence, &request,
                            (morse_desc_mat_free(&(descA)), morse_desc_mat_free(&(descB))) );
/*    } else {*/
/*        morse_ziplap2tile( descA, A, NB, NB, LDA, N, 0, 0, M, N,*/
/*                            sequence, &request);*/
/*    }*/

    /* Call the tile interface */
    MORSE_ztpqrt_Tile_Async(L, &descA, &descB, descT, sequence, &request);

/*    if ( MORSE_TRANSLATION == MORSE_OUTOFPLACE ) {*/
        morse_zooptile2lap(descA, A, NB, NB, LDA, N, sequence, &request);
        morse_zooptile2lap(descB, B, NB, NB, LDB, N, sequence, &request);
        morse_sequence_wait(morse, sequence);
        morse_desc_mat_free(&descA);
        morse_desc_mat_free(&descB);
/*    } else {*/
/*        morse_ziptile2lap( descA, A, NB, NB, LDA, N,  sequence, &request);*/
/*        morse_ziptile2lap( descB, B, NB, NB, LDB, N,  sequence, &request);*/
/*        morse_sequence_wait(morse, sequence);*/
/*    }*/

    status = sequence->status;
    morse_sequence_destroy(morse, sequence);
    return status;
}

/***************************************************************************//**
 *
 * @ingroup MORSE_Complex64_t_Tile
 *
 *  MORSE_ztpqrt_Tile - Computes the tile QR factorization of a matrix.
 *  Tile equivalent of MORSE_ztpqrt().
 *  Operates on matrices stored by tiles.
 *  All matrices are passed through descriptors.
 *  All dimensions are taken from the descriptors.
 *
 *******************************************************************************
 *
 * @param[in,out] A
 *          On entry, the M-by-N matrix A.
 *          On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N
 *          upper trapezoidal matrix R (R is upper triangular if M >= N); the elements below the
 *          diagonal represent the unitary matrix Q as a product of elementary reflectors stored
 *          by tiles.
 *
 * @param[out] T
 *          On exit, auxiliary factorization data, required by MORSE_zgeqrs to solve the system
 *          of equations.
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *
 *******************************************************************************
 *
 * @sa MORSE_ztpqrt
 * @sa MORSE_ztpqrt_Tile_Async
 * @sa MORSE_ctpqrt_Tile
 * @sa MORSE_dtpqrt_Tile
 * @sa MORSE_stpqrt_Tile
 * @sa MORSE_zgeqrs_Tile
 *
 ******************************************************************************/
int MORSE_ztpqrt_Tile( int L, MORSE_desc_t *A, MORSE_desc_t *B, MORSE_desc_t *T )
{
    MORSE_context_t *morse;
    MORSE_sequence_t *sequence = NULL;
    MORSE_request_t request = MORSE_REQUEST_INITIALIZER;
    int status;

    morse = morse_context_self();
    if (morse == NULL) {
        morse_fatal_error("MORSE_ztpqrt_Tile", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }
    morse_sequence_create(morse, &sequence);
    MORSE_ztpqrt_Tile_Async(L, A, B, T, sequence, &request);
    morse_sequence_wait(morse, sequence);
    RUNTIME_desc_getoncpu(B);

    status = sequence->status;
    morse_sequence_destroy(morse, sequence);
    return status;
}

/***************************************************************************//**
 *
 * @ingroup MORSE_Complex64_t_Tile_Async
 *
 *  MORSE_ztpqrt_Tile_Async - Computes the tile QR factorization of a matrix.
 *  Non-blocking equivalent of MORSE_ztpqrt_Tile().
 *  May return before the computation is finished.
 *  Allows for pipelining of operations at runtime.
 *
 *******************************************************************************
 *
 * @param[in] sequence
 *          Identifies the sequence of function calls that this call belongs to
 *          (for completion checks and exception handling purposes).
 *
 * @param[out] request
 *          Identifies this function call (for exception handling purposes).
 *
 *******************************************************************************
 *
 * @sa MORSE_ztpqrt
 * @sa MORSE_ztpqrt_Tile
 * @sa MORSE_ctpqrt_Tile_Async
 * @sa MORSE_dtpqrt_Tile_Async
 * @sa MORSE_stpqrt_Tile_Async
 * @sa MORSE_zgeqrs_Tile_Async
 *
 ******************************************************************************/
int MORSE_ztpqrt_Tile_Async( int L, MORSE_desc_t *A, MORSE_desc_t *B, MORSE_desc_t *T,
                             MORSE_sequence_t *sequence, MORSE_request_t *request )
{
    MORSE_context_t *morse;

    morse = morse_context_self();
    if (morse == NULL) {
        morse_error("MORSE_ztpqrt_Tile", "MORSE not initialized");
        return MORSE_ERR_NOT_INITIALIZED;
    }
    if (sequence == NULL) {
        morse_fatal_error("MORSE_ztpqrt_Tile", "NULL sequence");
        return MORSE_ERR_UNALLOCATED;
    }
    if (request == NULL) {
        morse_fatal_error("MORSE_ztpqrt_Tile", "NULL request");
        return MORSE_ERR_UNALLOCATED;
    }
    /* Check sequence status */
    if (sequence->status == MORSE_SUCCESS)
        request->status = MORSE_SUCCESS;
    else
        return morse_request_fail(sequence, request, MORSE_ERR_SEQUENCE_FLUSHED);

    /* Check descriptors for correctness */
    if (morse_desc_check(A) != MORSE_SUCCESS) {
        morse_error("MORSE_ztpqrt_Tile", "invalid first descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if (morse_desc_check(B) != MORSE_SUCCESS) {
        morse_error("MORSE_ztpqrt_Tile", "invalid second descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if (morse_desc_check(T) != MORSE_SUCCESS) {
        morse_error("MORSE_ztpqrt_Tile", "invalid third descriptor");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    /* Check input arguments */
    if (A->nb != A->mb) {
        morse_error("MORSE_ztpqrt_Tile", "only square tiles supported");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }
    if (((B->m - L) % B->mb) != 0) {
        morse_error("MORSE_ztpqrt_Tile", "Triangular part must be aligned with tiles");
        return morse_request_fail(sequence, request, MORSE_ERR_ILLEGAL_VALUE);
    }

    /* if (morse->householder == MORSE_FLAT_HOUSEHOLDER) { */
    morse_pztpqrt(L, A, B, T, sequence, request);
    /* } */
    /* else { */
    /*    morse_pztpqrtrh(A, T, MORSE_RHBLK, sequence, request); */
    /* } */

    return MORSE_SUCCESS;
}