codelet_zunmqr.c 7.93 KB
Newer Older
1 2
/**
 *
3 4
 * @copyright (c) 2009-2014 The University of Tennessee and The University
 *                          of Tennessee Research Foundation.
5 6
 *                          All rights reserved.
 * @copyright (c) 2012-2014 Inria. All rights reserved.
7
 * @copyright (c) 2012-2014, 2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 **/

/**
 *
 * @file codelet_zunmqr.c
 *
 *  MORSE codelets kernel
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 2.5.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for MORSE 1.0.0
 * @author Hatem Ltaief
 * @author Jakub Kurzak
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @date 2010-11-15
 * @precisions normal z -> c d s
 *
 **/
PRUVOST Florent's avatar
PRUVOST Florent committed
31

32
#include "runtime/starpu/include/morse_starpu.h"
33
#include "runtime/starpu/include/runtime_codelet_z.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

/**
 *
 * @ingroup CORE_MORSE_Complex64_t
 *
 *  CORE_zunmqr overwrites the general complex M-by-N tile C with
 *
 *                    SIDE = 'L'     SIDE = 'R'
 *    TRANS = 'N':      Q * C          C * Q
 *    TRANS = 'C':      Q**H * C       C * Q**H
 *
 *  where Q is a complex unitary matrix defined as the product of k
 *  elementary reflectors
 *
 *    Q = H(1) H(2) . . . H(k)
 *
 *  as returned by CORE_zgeqrt. Q is of order M if SIDE = 'L' and of order N
 *  if SIDE = 'R'.
 *
 *******************************************************************************
 *
 * @param[in] side
 *         @arg MorseLeft  : apply Q or Q**H from the Left;
 *         @arg MorseRight : apply Q or Q**H from the Right.
 *
 * @param[in] trans
 *         @arg MorseNoTrans   :  No transpose, apply Q;
 *         @arg MorseConjTrans :  Transpose, apply Q**H.
 *
 * @param[in] M
 *         The number of rows of the tile C.  M >= 0.
 *
 * @param[in] N
 *         The number of columns of the tile C.  N >= 0.
 *
 * @param[in] K
 *         The number of elementary reflectors whose product defines
 *         the matrix Q.
 *         If SIDE = MorseLeft,  M >= K >= 0;
 *         if SIDE = MorseRight, N >= K >= 0.
 *
 * @param[in] IB
 *         The inner-blocking size.  IB >= 0.
 *
 * @param[in] A
 *         Dimension:  (LDA,K)
 *         The i-th column must contain the vector which defines the
 *         elementary reflector H(i), for i = 1,2,...,k, as returned by
 *         CORE_zgeqrt in the first k columns of its array argument A.
 *
 * @param[in] LDA
 *         The leading dimension of the array A.
 *         If SIDE = MorseLeft,  LDA >= max(1,M);
 *         if SIDE = MorseRight, LDA >= max(1,N).
 *
 * @param[in] T
 *         The IB-by-K triangular factor T of the block reflector.
 *         T is upper triangular by block (economic storage);
 *         The rest of the array is not referenced.
 *
 * @param[in] LDT
 *         The leading dimension of the array T. LDT >= IB.
 *
 * @param[in,out] C
 *         On entry, the M-by-N tile C.
 *         On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 *
 * @param[in] LDC
 *         The leading dimension of the array C. LDC >= max(1,M).
 *
 * @param[in,out] WORK
 *         On exit, if INFO = 0, WORK(1) returns the optimal LDWORK.
 *
 * @param[in] LDWORK
 *         The dimension of the array WORK.
 *         If SIDE = MorseLeft,  LDWORK >= max(1,N);
 *         if SIDE = MorseRight, LDWORK >= max(1,M).
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 ******************************************************************************/

void MORSE_TASK_zunmqr(MORSE_option_t *options,
                       MORSE_enum side, MORSE_enum trans,
                       int m, int n, int k, int ib, int nb,
                       MORSE_desc_t *A, int Am, int An, int lda,
                       MORSE_desc_t *T, int Tm, int Tn, int ldt,
                       MORSE_desc_t *C, int Cm, int Cn, int ldc)
{
    struct starpu_codelet *codelet = &cl_zunmqr;
    void (*callback)(void*) = options->profiling ? cl_zunmqr_callback : NULL;
129 130 131 132 133
    int sizeA = lda*k;
    int sizeT = ldt*n;
    int sizeC = ldc*n;
    int execution_rank = C->get_rankof( C, Cm, Cn );
    int rank_changed=0;
134
    (void)execution_rank;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    // force execution on the rank owning the largest data (tile)
    int threshold;
    char* env = getenv("MORSE_COMM_FACTOR_THRESHOLD");
    if (env != NULL)
        threshold = (unsigned)atoi(env);
    else
        threshold = 10;
    if ( sizeA > threshold*sizeC ){
        execution_rank = A->get_rankof( A, Am, An );
        rank_changed = 1;
    }else if( sizeT > threshold*sizeC ){
        execution_rank = T->get_rankof( T, Tm, Tn );
        rank_changed = 1;
    }
150 151 152

    if ( morse_desc_islocal( A, Am, An ) ||
         morse_desc_islocal( T, Tm, Tn ) ||
153 154
         morse_desc_islocal( C, Cm, Cn ) ||
         rank_changed )
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    {
        starpu_insert_task(
            codelet,
            STARPU_VALUE,    &side,              sizeof(MORSE_enum),
            STARPU_VALUE,    &trans,             sizeof(MORSE_enum),
            STARPU_VALUE,    &m,                 sizeof(int),
            STARPU_VALUE,    &n,                 sizeof(int),
            STARPU_VALUE,    &k,                 sizeof(int),
            STARPU_VALUE,    &ib,                sizeof(int),
            STARPU_R,         RTBLKADDR(A, MORSE_Complex64_t, Am, An),
            STARPU_VALUE,    &lda,               sizeof(int),
            STARPU_R,         RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn),
            STARPU_VALUE,    &ldt,               sizeof(int),
            STARPU_RW,        RTBLKADDR(C, MORSE_Complex64_t, Cm, Cn),
            STARPU_VALUE,    &ldc,               sizeof(int),
            /* ib * nb */
            STARPU_SCRATCH,   options->ws_worker,
            STARPU_VALUE,    &nb,                sizeof(int),
            STARPU_PRIORITY,  options->priority,
            STARPU_CALLBACK,  callback,
175 176 177
#if defined(CHAMELEON_USE_MPI)
            STARPU_EXECUTE_ON_NODE, execution_rank,
#endif
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
            0);
    }
}


static void cl_zunmqr_cpu_func(void *descr[], void *cl_arg)
{
    MORSE_enum side;
    MORSE_enum trans;
    int m;
    int n;
    int k;
    int ib;
    MORSE_Complex64_t *A;
    int lda;
    MORSE_Complex64_t *T;
    int ldt;
    MORSE_Complex64_t *C;
    int ldc;
    MORSE_Complex64_t *WORK;
    int ldwork;

    A    = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
    T    = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
    C    = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]);
    WORK = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[3]); /* ib * nb */

    starpu_codelet_unpack_args(cl_arg, &side, &trans, &m, &n, &k, &ib,
                               &lda, &ldt, &ldc, &ldwork);

    CORE_zunmqr(side, trans, m, n, k, ib,
                A, lda, T, ldt, C, ldc, WORK, ldwork);
}

212
#if defined(CHAMELEON_USE_MAGMA)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void cl_zunmqr_cuda_func(void *descr[], void *cl_arg)
{
    MORSE_starpu_ws_t *d_work;
    MORSE_enum side;
    MORSE_enum trans;
    int m;
    int n;
    int k;
    int ib;
    cuDoubleComplex *A, *T, *C, *WORK;
    int lda, ldt, ldc, ldwork;
    int info = 0;

    starpu_codelet_unpack_args(cl_arg, &side, &trans, &m, &n, &k, &ib,
                               &lda, &ldt, &ldc, &ldwork);

    A    = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]);
    T    = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]);
    C    = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]);
    WORK = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[3]); /* ib * nb */

234 235 236
    CUDA_zunmqrt(
            side, trans, m, n, k, ib,
            A, lda, T, ldt, C, ldc, WORK, ldwork );
237 238 239 240 241 242 243 244

    cudaThreadSynchronize();
}
#endif

/*
 * Codelet definition
 */
245
#if defined(CHAMELEON_USE_MAGMA) || defined(CHAMELEON_SIMULATION_MAGMA)
246 247 248 249
CODELETS(zunmqr, 4, cl_zunmqr_cpu_func, cl_zunmqr_cuda_func, 0)
#else
CODELETS_CPU(zunmqr, 4, cl_zunmqr_cpu_func)
#endif