codelet_ztslqt.c 7.09 KB
Newer Older
1 2
/**
 *
3 4
 * @copyright (c) 2009-2014 The University of Tennessee and The University
 *                          of Tennessee Research Foundation.
5 6
 *                          All rights reserved.
 * @copyright (c) 2012-2014 Inria. All rights reserved.
7
 * @copyright (c) 2012-2014, 2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 **/

/**
 *
 * @file codelet_ztslqt.c
 *
 *  MORSE codelets kernel
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 2.5.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for MORSE 1.0.0
 * @author Hatem Ltaief
 * @author Jakub Kurzak
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @date 2010-11-15
 * @precisions normal z -> c d s
 *
 **/
PRUVOST Florent's avatar
PRUVOST Florent committed
31

32
#include "runtime/starpu/include/morse_starpu.h"
33
#include "runtime/starpu/include/runtime_codelet_z.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#undef REAL
#define COMPLEX

/**
 *
 * @ingroup CORE_MORSE_Complex64_t
 *
 *  CORE_ztslqt computes a LQ factorization of a rectangular matrix
 *  formed by coupling side-by-side a complex M-by-M
 *  lower triangular tile A1 and a complex M-by-N tile A2:
 *
 *    | A1 A2 | = L * Q
 *
 *  The tile Q is represented as a product of elementary reflectors
 *
 *    Q = H(k)' . . . H(2)' H(1)', where k = min(M,N).
 *
 *  Each H(i) has the form
 *
 *    H(i) = I - tau * v * v'
 *
 *  where tau is a complex scalar, and v is a complex vector with
 *  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
 *  A2(i,1:n), and tau in TAU(i).
 *
 *******************************************************************************
 *
 * @param[in] M
 *         The number of rows of the tile A1 and A2. M >= 0.
 *         The number of columns of the tile A1.
 *
 * @param[in] N
 *         The number of columns of the tile A2. N >= 0.
 *
 * @param[in] IB
 *         The inner-blocking size.  IB >= 0.
 *
 * @param[in,out] A1
 *         On entry, the M-by-M tile A1.
 *         On exit, the elements on and below the diagonal of the array
 *         contain the M-by-M lower trapezoidal tile L;
 *         the elements above the diagonal are not referenced.
 *
 * @param[in] LDA1
 *         The leading dimension of the array A1. LDA1 >= max(1,M).
 *
 * @param[in,out] A2
 *         On entry, the M-by-N tile A2.
 *         On exit, all the elements with the array TAU, represent
 *         the unitary tile Q as a product of elementary reflectors
 *         (see Further Details).
 *
 * @param[in] LDA2
 *         The leading dimension of the tile A2. LDA2 >= max(1,M).
 *
 * @param[out] T
 *         The IB-by-N triangular factor T of the block reflector.
 *         T is upper triangular by block (economic storage);
 *         The rest of the array is not referenced.
 *
 * @param[in] LDT
 *         The leading dimension of the array T. LDT >= IB.
 *
 * @param[out] TAU
 *         The scalar factors of the elementary reflectors (see Further
 *         Details).
 *
 * @param[out] WORK
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 ******************************************************************************/

void MORSE_TASK_ztslqt(MORSE_option_t *options,
                       int m, int n, int ib, int nb,
                       MORSE_desc_t *A1, int A1m, int A1n, int lda1,
                       MORSE_desc_t *A2, int A2m, int A2n, int lda2,
                       MORSE_desc_t *T, int Tm, int Tn, int ldt)
{
    (void)nb;
    struct starpu_codelet *codelet = &cl_ztslqt;
    void (*callback)(void*) = options->profiling ? cl_ztslqt_callback : NULL;
    MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host);

    if ( morse_desc_islocal( A1, A1m, A1n ) ||
         morse_desc_islocal( A2, A2m, A2n ) ||
         morse_desc_islocal( T,  Tm,  Tn  ) )
    {
        starpu_insert_task(
            codelet,
            STARPU_VALUE,    &m,                 sizeof(int),
            STARPU_VALUE,    &n,                 sizeof(int),
            STARPU_VALUE,    &ib,                sizeof(int),
            STARPU_RW,        RTBLKADDR(A1, MORSE_Complex64_t, A1m, A1n),
            STARPU_VALUE,    &lda1,              sizeof(int),
            STARPU_RW,        RTBLKADDR(A2, MORSE_Complex64_t, A2m, A2n),
            STARPU_VALUE,    &lda2,              sizeof(int),
            STARPU_W,         RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn),
            STARPU_VALUE,    &ldt,               sizeof(int),
            /* max( nb * (ib+1), ib * (ib+nb) ) */
            STARPU_SCRATCH,   options->ws_worker,
            /* /\* 2 * ib * (nb+ib) + nb *\/ */
            STARPU_VALUE,    &h_work,            sizeof(MORSE_starpu_ws_t *),
            STARPU_PRIORITY,  options->priority,
            STARPU_CALLBACK,  callback,
            0);
    }
}


static void cl_ztslqt_cpu_func(void *descr[], void *cl_arg)
{
    MORSE_starpu_ws_t *h_work;
    int m;
    int n;
    int ib;
    MORSE_Complex64_t *A1;
    int lda1;
    MORSE_Complex64_t *A2;
    int lda2;
    MORSE_Complex64_t *T;
    int ldt;
    MORSE_Complex64_t *TAU, *WORK;

    A1 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
    A2 = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
    T  = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]);
    TAU= (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[3]); /* nb + ib*nb */

    starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda1, &lda2, &ldt, &h_work);

    WORK = TAU + max( m, n );
    CORE_ztslqt(m, n, ib, A1, lda1, A2, lda2, T, ldt, TAU, WORK);
}

173
#if defined(CHAMELEON_USE_MAGMA) && 0
174 175 176 177 178 179 180 181 182
static void cl_ztslqt_cuda_func(void *descr[], void *cl_arg)
{
    MORSE_starpu_ws_t *h_work;
    int m;
    int n;
    int ib;
    cuDoubleComplex *h_A2, *h_T, *h_D, *h_TAU, *h_W;
    cuDoubleComplex *d_A1, *d_A2, *d_T, *d_D, *d_W;
    int lda1, lda2, ldt;
183
    CUstream stream;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda1, &lda2, &ldt, &h_work);

    /* Gather pointer to data on device */
    d_A1 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]);
    d_A2 = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]);
    d_T  = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]);
    d_W  = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[3]); /* 2*ib*m + ib*ib */
    d_D  = d_W + 2*ib*m;

    /* scratch data on host */
    /* ib*n + ib*n + max(m,n) + ib*m + ib*ib */
    h_A2  = (cuDoubleComplex*)RUNTIME_starpu_ws_getlocal(h_work);
    h_T   = h_A2  + ib*n;
    h_TAU = h_T   + ib*n;
    h_W   = h_TAU + max(m,n);
    h_D   = h_W   + ib*m;

202
    stream = starpu_cuda_get_local_stream();
203 204 205 206 207 208 209
    CUDA_ztslqt(
            m, n, ib,
            d_A1, lda1, d_A2, lda2,
            h_A2, ib,
            d_T, ldt, h_T, ib,
            d_D, h_D, ib, h_TAU,
            h_W, d_W, stream);
210 211 212 213 214 215 216 217 218

    cudaThreadSynchronize();
}

#endif

/*
 * Codelet definition
 */
219
#if (defined(CHAMELEON_USE_MAGMA) || defined(CHAMELEON_SIMULATION_MAGMA)) && 0
220 221 222 223
CODELETS(ztslqt, 4, cl_ztslqt_cpu_func, cl_ztslqt_cuda_func, 0)
#else
CODELETS_CPU(ztslqt, 4, cl_ztslqt_cpu_func)
#endif