codelet_zgeqrt.c 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/**
 *
 * @copyright (c) 2009-2014 The University of Tennessee and The University 
 *                          of Tennessee Research Foundation. 
 *                          All rights reserved.
 * @copyright (c) 2012-2014 Inria. All rights reserved.
 * @copyright (c) 2012-2014 IPB. All rights reserved. 
 *
 **/

/**
 *
 * @file codelet_zgeqrt.c
 *
 *  MORSE codelets kernel
 *  MORSE is a software package provided by Univ. of Tennessee,
 *  Univ. of California Berkeley and Univ. of Colorado Denver
 *
 * @version 2.5.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for MORSE 1.0.0
 * @author Hatem Ltaief
 * @author Jakub Kurzak
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @date 2010-11-15
 * @precisions normal z -> c d s
 *
 **/
#include <lapacke.h>
#include "morse_starpu.h"
#include "codelet_z.h"

/**
 *
 * @ingroup CORE_MORSE_Complex64_t
 *
 *  CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A:
 *  A = Q * R.
 *
 *  The tile Q is represented as a product of elementary reflectors
 *
 *    Q = H(1) H(2) . . . H(k), where k = min(M,N).
 *
 *  Each H(i) has the form
 *
 *    H(i) = I - tau * v * v'
 *
 *  where tau is a complex scalar, and v is a complex vector with
 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 *  and tau in TAU(i).
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the tile A.  M >= 0.
 *
 * @param[in] N
 *         The number of columns of the tile A.  N >= 0.
 *
 * @param[in] IB
 *         The inner-blocking size.  IB >= 0.
 *
 * @param[in,out] A
 *         On entry, the M-by-N tile A.
 *         On exit, the elements on and above the diagonal of the array
 *         contain the min(M,N)-by-N upper trapezoidal tile R (R is
 *         upper triangular if M >= N); the elements below the diagonal,
 *         with the array TAU, represent the unitary tile Q as a
 *         product of elementary reflectors (see Further Details).
 *
 * @param[in] LDA
 *         The leading dimension of the array A.  LDA >= max(1,M).
 *
 * @param[out] T
 *         The IB-by-N triangular factor T of the block reflector.
 *         T is upper triangular by block (economic storage);
 *         The rest of the array is not referenced.
 *
 * @param[in] LDT
 *         The leading dimension of the array T. LDT >= IB.
 *
 * @param[out] TAU
 *         The scalar factors of the elementary reflectors (see Further
 *         Details).
 *
 * @param[out] WORK
 *
 *******************************************************************************
 *
 * @return
 *          \retval MORSE_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 ******************************************************************************/

void MORSE_TASK_zgeqrt(MORSE_option_t *options,
                       int m, int n, int ib, int nb,
                       MORSE_desc_t *A, int Am, int An, int lda,
                       MORSE_desc_t *T, int Tm, int Tn, int ldt)
{
    (void)nb;
    struct starpu_codelet *codelet = &cl_zgeqrt;
    void (*callback)(void*) = options->profiling ? cl_zgeqrt_callback : NULL;
    MORSE_starpu_ws_t *h_work = (MORSE_starpu_ws_t*)(options->ws_host);

    if ( morse_desc_islocal( A, Am, An ) ||
         morse_desc_islocal( T, Tm, Tn ) )
    {
        starpu_insert_task(
            codelet,
            STARPU_VALUE,    &m,                 sizeof(int),
            STARPU_VALUE,    &n,                 sizeof(int),
            STARPU_VALUE,    &ib,                sizeof(int),
            STARPU_RW,        RTBLKADDR(A, MORSE_Complex64_t, Am, An),
            STARPU_VALUE,    &lda,               sizeof(int),
            STARPU_W,         RTBLKADDR(T, MORSE_Complex64_t, Tm, Tn),
            STARPU_VALUE,    &ldt,               sizeof(int),
            /* max( nb * (ib+1), ib * (ib+nb) ) */
            STARPU_SCRATCH,   options->ws_worker,
            /* ib * (m+3*ib) + max(m,n) */
            STARPU_VALUE,    &h_work,            sizeof(MORSE_starpu_ws_t *),
            STARPU_PRIORITY,  options->priority,
            STARPU_CALLBACK,  callback,
            0);
    }
}


static void cl_zgeqrt_cpu_func(void *descr[], void *cl_arg)
{
    MORSE_starpu_ws_t *h_work;
    int m;
    int n;
    int ib;
    MORSE_Complex64_t *A;
    int lda;
    MORSE_Complex64_t *T;
    int ldt;
    MORSE_Complex64_t *TAU, *WORK;

    A   = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[0]);
    T   = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[1]);
    TAU = (MORSE_Complex64_t *)STARPU_MATRIX_GET_PTR(descr[2]); /* max(m,n) + n * ib */

    starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldt, &h_work);

    WORK = TAU + max( m, n );
    CORE_zgeqrt(m, n, ib, A, lda, T, ldt, TAU, WORK);
}


154
#if defined(CHAMELEON_USE_MAGMA)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

magma_int_t
magma_zgemerge_gpu(magma_side_t side, magma_diag_t diag,
                   magma_int_t M, magma_int_t N,
                   magmaDoubleComplex *A, magma_int_t LDA,
                   magmaDoubleComplex *B, magma_int_t LDB)
{
    int i, j;
    magmaDoubleComplex *cola, *colb;

    if (M < 0) {
        return -1;
    }
    if (N < 0) {
        return -2;
    }
    if ( (LDA < max(1,M)) && (M > 0) ) {
        return -5;
    }
    if ( (LDB < max(1,M)) && (M > 0) ) {
        return -7;
    }

    if (side == MagmaLeft){
        for(i=0; i<N; i++){
            cola = A + i*LDA;
            colb = B + i*LDB;
            cublasZcopy(i+1, cola, 1, colb, 1);
        }
    }else{
        for(i=0; i<N; i++){
            cola = A + i*LDA;
            colb = B + i*LDB;
            cublasZcopy(M-i, cola + i, 1, colb + i, 1);
        }
    }

    return MAGMA_SUCCESS;
}


magma_int_t
magma_zgeqrt_gpu( magma_int_t m, magma_int_t n, magma_int_t nb,
                  magmaDoubleComplex *da, magma_int_t ldda,
                  magmaDoubleComplex *v,  magma_int_t ldv,
                  magmaDoubleComplex *dt, magma_int_t lddt,
                  magmaDoubleComplex *t,  magma_int_t ldt,
                  magmaDoubleComplex *dd,
                  magmaDoubleComplex *d,  magma_int_t ldd,
                  magmaDoubleComplex *tau,
                  magmaDoubleComplex *hwork,
                  magmaDoubleComplex *dwork)
{
#define da_ref(a_1,a_2) ( da+(a_2)*(ldda) + (a_1))
#define v_ref(a_1,a_2)  ( v+(a_2)*(ldv) + (a_1))
#define dt_ref(a_1,a_2) ( dt+(a_2)*(lddt) + (a_1))
#define t_ref(a_1,a_2)  ( t+(a_2)*(ldt) + (a_1))

    int i, k, ib, lddwork, old_i, old_ib, rows, cols;
    double _Complex one=1.;
//    int lwkopt = n * nb;
//    hwork[0] = *((magmaDoubleComplex*) &lwkopt);

    if (m < 0) {
        return -1;
    } else if (n < 0) {
        return -2;
    } else if (ldda < max(1,m)) {
        return -4;
    }

    k = min(m,n);
    if (k == 0) {
        hwork[0] = *((magmaDoubleComplex*) &one);
        return MAGMA_SUCCESS;
    }

    lddwork= k;

    /* lower parts of little T must be zero: memset to 0 for simplicity */
    memset(t_ref(0,0), 0, nb*nb*sizeof(magmaDoubleComplex));
    cudaMemset(dt_ref(0,0), 0, nb*n*sizeof(magmaDoubleComplex));

    /* copy first panel of A on the host */
	cublasGetMatrix(m, min(nb,n), sizeof(magmaDoubleComplex),
                    da_ref(0, 0), ldda,
                    v, ldv);

    /* Use blocked code initially */
    for (i = 0; i < k; i += nb) {

        ib = min(k-i, nb);
        if (i+nb>=n) ib = min(n-i, nb);
        rows = m-i;

        if (i>0){

            /* copy panel of A from device to host */
        	cublasGetMatrix(m, ib, sizeof(magmaDoubleComplex),
                            da_ref(0, i), ldda,
                            v, ldv);

            /* Apply H' to A(i:m,i+2*ib:n) from the left */
            cols = n-old_i-2*old_ib;
            if (cols > 0){
                magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                  m-old_i, cols, old_ib,
                                  da_ref(old_i, old_i), ldda, dt_ref(0,old_i), lddt,
                                  da_ref(old_i, old_i+2*old_ib), ldda,
                                  dwork, cols);
            }

            /* copy the upper diag tile into d_A */
            magma_zgemerge_gpu(MagmaLeft, MagmaUnit, old_ib, old_ib,
                               dd, ldd, da_ref(old_i, old_i), ldda);

        }

        /* Form the triangular factor of the block reflector on the host
         H = H(i) H(i+1) . . . H(i+ib-1) */
        CORE_zgeqrt(rows, ib, ib,
                    (double _Complex*) v_ref(i,0), ldv,
                    (double _Complex*) t_ref(0,0), ldt,
                    (double _Complex*) tau+i,
                    (double _Complex*) hwork);

        if ( i + ib < n ){
            /* put 0s in the upper triangular part of a panel (and 1s on the
             diagonal); copy the upper triangular in d */
            CORE_zgesplit(MorseLeft, MorseUnit, min(rows,ib), ib,
                          (double _Complex*) v_ref(i,0), ldv,
                          (double _Complex*) d, ldd);

            /* copy from host to device a tile diag */
            cublasSetMatrix( min(rows,ib), ib, sizeof(magmaDoubleComplex),
                             d, ldd, dd, ldd );
        }

        /* Send the triangular factor T to the GPU */
        cublasSetMatrix( ib, ib, sizeof(magmaDoubleComplex),
                         t_ref(0,0), ldt, dt_ref(0,i), lddt );

        /* A panel (with zeros in upper tri of its diag) is ready to be used
         in input of zlarfb_gpu: we send the panel to the gpu */
        cublasSetMatrix( rows, ib, sizeof(magmaDoubleComplex),
                         v_ref(i,0), ldv, da_ref(i,i), ldda );

        if (i + ib < n) {

            if (i+2*ib < n){
                cols = ib;
            }
            else{
                cols = n-i-ib;
            }
            /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */
            magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                              rows, cols, ib, da_ref(i,i), ldda, dt_ref(0,i),
                              lddt, da_ref(i,i+ib), ldda, dwork, cols);
            old_i = i;
            old_ib = ib;
            if (i+nb>=k){
                /* Apply H' to A(i:m,i+2*ib:n) from the left */
                cols = n-old_i-2*old_ib;
                if (cols > 0){
                    magma_zlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                      rows, cols, old_ib,
                                      da_ref(old_i, old_i), ldda, dt_ref(0,old_i), lddt,
                                      da_ref(old_i, old_i+2*old_ib), ldda,
                                      dwork, cols);
                }
                /* copy the upper diag tile into d_A */
                magma_zgemerge_gpu(MagmaLeft, MagmaUnit, old_ib, old_ib,
                                   dd, ldd, da_ref(old_i, old_i), ldda);
            }
        }

    }

#undef da_ref
#undef v_ref
#undef dt_ref
#undef t_ref

    return MAGMA_SUCCESS;
} /* magma_zgeqrt_gpu */

static void cl_zgeqrt_cuda_func(void *descr[], void *cl_arg)
{
    MORSE_starpu_ws_t *h_work;
    int m;
    int n;
    int ib;
    cuDoubleComplex *h_A, *h_T, *h_D, *h_W, *h_TAU;
    cuDoubleComplex *d_A, *d_T, *d_D, *d_W;
    int lda, ldt;

    starpu_codelet_unpack_args(cl_arg, &m, &n, &ib, &lda, &ldt, &h_work);

    /* Gather pointer to data on device */
    d_A = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[0]);
    d_T = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[1]);
    d_W = (cuDoubleComplex *)STARPU_MATRIX_GET_PTR(descr[2]); /* ib*n + ib * ib*/
    d_D = d_W + ib*n;

    /* scratch data on host */
    /* m*ib + ib*ib + max(m,n) + ib*ib + ib*ib */
    h_A = (cuDoubleComplex*)RUNTIME_starpu_ws_getlocal(h_work);

    /* Gather pointer to scratch data on host */
    h_T   = h_A   + m*ib;
    h_TAU = h_T   + ib*ib;
    h_W   = h_TAU + max(m,n);
    h_D   = h_W   + ib*ib;

    magma_zgeqrt_gpu( m, n, ib,
                      d_A, lda, h_A, m,
                      d_T, ldt, h_T, ib,
                      d_D, h_D, ib, h_TAU,
                      h_W, d_W);

    cudaThreadSynchronize();
}

#endif

/*
 * Codelet definition
 */
384
#if defined(CHAMELEON_USE_MAGMA) || defined(CHAMELEON_SIMULATION)
385 386 387 388
CODELETS(zgeqrt, 3, cl_zgeqrt_cpu_func, cl_zgeqrt_cuda_func, 0)
#else
CODELETS_CPU(zgeqrt, 3, cl_zgeqrt_cpu_func)
#endif