codelet_zgeqrt.c 3.37 KB
Newer Older
Philippe Virouleau's avatar
Philippe Virouleau committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/**
 *
 * @file codelet_zgeqrt.c
 *
 * @copyright 2009-2014 The University of Tennessee and The University of
 *                      Tennessee Research Foundation. All rights reserved.
 * @copyright 2012-2016 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
 *                      Univ. Bordeaux. All rights reserved.
 *
 ***
 *
 * @brief Chameleon zgeqrt StarPU codelet
 *
 * @version 1.0.0
 * @comment This file has been automatically generated
 *          from Plasma 2.5.0 for CHAMELEON 1.0.0
 * @author Hatem Ltaief
 * @author Jakub Kurzak
 * @author Mathieu Faverge
 * @author Emmanuel Agullo
 * @author Cedric Castagnede
 * @author Philippe Virouleau
 * @date 2018-06-20
 * @precisions normal z -> c d s
 *
 */
#include "chameleon_openmp.h"
#include "chameleon/tasks_z.h"
#include "coreblas/coreblas_z.h"

/**
 *
 * @ingroup CORE_CHAMELEON_Complex64_t
 *
 *  CORE_zgeqrt computes a QR factorization of a complex M-by-N tile A:
 *  A = Q * R.
 *
 *  The tile Q is represented as a product of elementary reflectors
 *
 *    Q = H(1) H(2) . . . H(k), where k = min(M,N).
 *
 *  Each H(i) has the form
 *
 *    H(i) = I - tau * v * v'
 *
 *  where tau is a complex scalar, and v is a complex vector with
 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 *  and tau in TAU(i).
 *
 *******************************************************************************
 *
 * @param[in] M
 *          The number of rows of the tile A.  M >= 0.
 *
 * @param[in] N
 *         The number of columns of the tile A.  N >= 0.
 *
 * @param[in] IB
 *         The inner-blocking size.  IB >= 0.
 *
 * @param[in,out] A
 *         On entry, the M-by-N tile A.
 *         On exit, the elements on and above the diagonal of the array
 *         contain the min(M,N)-by-N upper trapezoidal tile R (R is
 *         upper triangular if M >= N); the elements below the diagonal,
 *         with the array TAU, represent the unitary tile Q as a
 *         product of elementary reflectors (see Further Details).
 *
 * @param[in] LDA
 *         The leading dimension of the array A.  LDA >= max(1,M).
 *
 * @param[out] T
 *         The IB-by-N triangular factor T of the block reflector.
 *         T is upper triangular by block (economic storage);
 *         The rest of the array is not referenced.
 *
 * @param[in] LDT
 *         The leading dimension of the array T. LDT >= IB.
 *
 * @param[out] TAU
 *         The scalar factors of the elementary reflectors (see Further
 *         Details).
 *
 * @param[out] WORK
 *
 *******************************************************************************
 *
 * @return
 *          \retval CHAMELEON_SUCCESS successful exit
 *          \retval <0 if -i, the i-th argument had an illegal value
 *
 */

void INSERT_TASK_zgeqrt(const RUNTIME_option_t *options,
                       int m, int n, int ib, int nb,
                       const CHAM_desc_t *A, int Am, int An, int lda,
                       const CHAM_desc_t *T, int Tm, int Tn, int ldt)
{
    CHAMELEON_Complex64_t *ptrA = RTBLKADDR(A, CHAMELEON_Complex64_t, Am, An);
    CHAMELEON_Complex64_t *ptrT = RTBLKADDR(T, CHAMELEON_Complex64_t, Tm, Tn);
101 102 103 104 105 106
#pragma omp task firstprivate(m, n, ib, ptrA, lda, ptrT, ldt) depend(inout:ptrA[0]) depend(inout:ptrT[0])
    {
      CHAMELEON_Complex64_t TAU[options->ws_wsize];
      CHAMELEON_Complex64_t *work = TAU + chameleon_max(m, n);
      CORE_zgeqrt(m, n, ib, ptrA, lda, ptrT, ldt, TAU, work);
    }
Philippe Virouleau's avatar
Philippe Virouleau committed
107
}