diff --git a/1 - An invitation to sketched learning.ipynb b/1 - An invitation to sketched learning.ipynb
index 6dd02c19ea2752b991266585b4eea2d71d46ea3f..72a021a4f410594382cc6e8bcddb1ffb1306d9f9 100644
--- a/1 - An invitation to sketched learning.ipynb	
+++ b/1 - An invitation to sketched learning.ipynb	
@@ -58,8 +58,7 @@
     "K = 10       # Number of Gaussians\n",
     "n = int(1e7) # Number of samples we want to generate\n",
     "# We use the generatedataset_GMM method from pycle (we ask that the entries are <= 1, and imbalanced clusters)\n",
-    "X = pycle.utils.generatedataset_GMM(d,K,n,normalize='l_inf-unit-ball',balanced=False, separation_scale=6,\n",
-    "                                       output_required=\"GMM\") \n",
+    "X = pycle.utils.generatedataset_GMM(d,K,n,normalize='l_inf-unit-ball',balanced=False, separation_scale=6) \n",
     "\n",
     "# Bounds on the dataset, necessary for compressive k-means\n",
     "bounds = np.array([-np.ones(d),np.ones(d)]) # We assumed the data is normalized between -1 and 1\n",
@@ -80,7 +79,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -120,19 +119,21 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Now, to solve k-means (with $10$ centroids) from this sketch, we call the CLOMPR algorithm. To get a rough idea of the computational advantage of sketching, we record the elapsed time. We also compare to the standard k-means implementation from the `scikit-learn` library."
+    "Now, to solve k-means (with $10$ centroids) from this sketch, we call the CLOMPR algorithm [1]. To get a rough idea of the computational advantage of sketching, we record the elapsed time. We also compare to the standard k-means implementation from the `scikit-learn` library.\n",
+    "\n",
+    "[1] Nicolas Keriven, Anthony Bourrier, Rémi Gribonval, Patrick Pérez, \"Sketching for Large-Scale Learning of Mixture Models\", Information and Inference: a Journal of the IMA, vol. 7, issue 3, pp. 447-508, 2018 [ArXiv](https://arxiv.org/abs/1606.02838)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Time to learn centroids from sketch : 46.79973816871643 seconds\n"
+      "Time to learn centroids from the sketch : 19.64159607887268 seconds\n"
      ]
     }
    ],
@@ -140,19 +141,19 @@
     "start = time()\n",
     "(weights,centroids) = pycle.compressive_learning.CLOMPR(\"k-means\",z,Phi,K,bounds,nRepetitions=1)\n",
     "stop = time()\n",
-    "print(\"Time to learn centroids from sketch : {} seconds\".format(stop-start))"
+    "print(\"Time to learn centroids from the sketch : {} seconds\".format(stop-start))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Time to learn centroids from full dataset : 284.3603889942169 seconds\n"
+      "Time to learn centroids from the full dataset : 365.33590602874756 seconds\n"
      ]
     }
    ],
@@ -163,7 +164,7 @@
     "start = time()\n",
     "kmeans_estimator.fit(X)\n",
     "stop = time()\n",
-    "print(\"Time to learn centroids from full dataset : {} seconds\".format(stop-start))"
+    "print(\"Time to learn centroids from the full dataset : {} seconds\".format(stop-start))"
    ]
   },
   {
@@ -175,12 +176,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUQAAAE/CAYAAAA+D7rEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eZwtWVXn+12xYzhDTnesKurWBEILhVVlDTg85n4qYjeIqCDge9UqisJTPzwVHJ6CihaCDdjQT+u1NE8QELGhUaAp+iMCPkCqCq4oY1EDVXfO8Ywx7eH9sePkPZmVmTdvZVbdzHvj+/mczzknYkfEjogTv7P3WmuvLc45ampqamogONcVqKmpqdkp1IJYU1NTU1ELYk1NTU1FLYg1NTU1FbUg1tTU1FTUglhTU1NTUQtizVkhIn0RefQW93GliDgRCR/Ctv8gIj+zleM/EojIa0TkXee6HmfLRvdXRG4WkX98pOv0SFIL4jYgIi8SkTuqH9NxEfmoiDz5XNfr4cA5N+Gcu+dc16PmwWzHn8WFfn9rQdwiIvJK4M3AHwAXAZcD/xl47jmu11m3vi5kLoTrdSGc41apBXELiMg08LvAy51z/805N3DOlc65v3XO/WpVJhGRN4vIser1ZhFJqnVPF5EjIvJrInKqal3+sIg8W0S+ISILIvIbY8d7jYi8X0T+SkR6IvIFEbl2bP19IvIqEfkSMBCRUES+W0Q+IyJLIvLPIvL0sfI3i8g91b7uFZEXV8u/TUQ+KSIdEZkTkb8a28ZV679LRE6IiBpb97zq2IhIICKvFpG7RWReRN4nInvXuIY/JiJ3rlr2ShH575u8Bz8lIl8VkUUR+ZiIXDG27i0i8oCIdEXkThF5yhrX8l0i0gVurlpYvyci/191TW4Tkf1j22x0La+qrllPRD4OLG+3Tr2fKyKHq7rdLSLPqpZPi8ifV7+FoyLy+6NrPOqyisgbq/O9V0R+sFr3OuApwFurnspbq+VORF4uIncBd1XLXioi36x+Xx8SkUeN1cuJyLdVn/dV67si8nngMWPlRETeVP1uuyLyLyLyxM3csx2Nc65+PcQX8CxAA+EGZX4X+BxwEDgAfAb4vWrd06vtfxuIgJcCs8C7gUngaiAFrqrKvwYogR+tyv8KcC8QVevvAw4DlwFN4FJgHng2/s/v+6rvB4A20AX+TbXtJcDV1ef3AL9ZbdMAnjx2Pg74turz3cD3ja37a+DV1edfqs77EJAAfwa8p1p3ZbWfsFq3ADx+bD9fBJ6/zvX8B+Bnqs/PBb4JPL7a128Bnxkr+xJgX7Xu/wROAI1V1/KHq/NsVvu+G3jc2PdbqvLrXstq/WeB/1idz1OBHvCudc7hSUCn2kdQ7fvbq3UfqK5VG/+b+Tzwc9W6m6s6vxRQwM8DxwBZfW1W3a+PA3urc3omMAdcX9X1PwGfWuf+vhd4X1WXJwJHgX+s1v0AcCcwA0h1Dy4518/klp/pc12B3fwCXgycOEOZu4Fnj33/AeC+6vPT8YKnqu+T1Q/yu8bK3wn8cPX5NcDnxtYFwHHgKdX3+4CfGlv/KuCdq+rzMeB/r37kS8DzgeaqMn8B3AocWuN8xh+Y3wfePlb3AXBF9f2rwL8d2+6S6mEOGRPEat3/Dbyu+nw1sAgk61zP5Yce+Cjw06uux3BUhzW2XQSuHbuWn1pj37819v0XgP+xiWt5Of6PrT227t2sL4h/BrxpjeUXAfn4/QB+AvhE9flm4Jtj61rVdbx49bVZdb+eOfb9z4E/Gvs+Ud2XK8fvL15wSyqhrtb9AacF8ZnAN4DvBoJz/Sxu16vuMm+NeWC/bGybeRTwrbHv36qWLe/DOWeqz2n1fnJsfYr/0Y54YPTBOWeBI6v298DY5yuAH6u6eEsisgQ8Gf9PPgBeALwMOC4iHxaRb6+2+zX8v/7nReTLIvJT65zbu4EfEW8C+BHgC8650bleAXxg7LhfBQz+oV/N/wu8SEQE+Engfc65fJ1jjnMF8JaxYyxU9b4UQER+pepOd6r106zsyj7woD36VuSIIaev/brXEn/9F6trOmL8nq/mMvwf5VrnE+Hvx+gYf4ZvKT6ofs65YfVx/PexFuPnueL36Jzr43/Hl67a5gD+z2t82/Ht/h54K/A24JSI3CoiU2eox46nFsSt8Vn8P/oPb1DmGP6HPuLyatlD5bLRBxEJ8F3S8f2Npy96AN+qmRl7tZ1ztwA45z7mnPs+/EP9NeD/qZafcM691Dn3KODngP88siuN45z7Cv4h+UHgRXiBHD/2D646dsM5d3SN/XwOKPA2sBcB79zktXgA350cP0bTOfeZyl74a8CPA3ucczP4bqqsc602c6z1ruVxYI+ItMfKX36GfT1mneU5sH/sGFPOuas3Wcf1zmd8+YrfY1Xnffju8Diz+FbvZWPLVpyTc+5PnHM3AE/Amxl+dZP13LHUgrgFnHMdvP3vbeKdIS0RiUTkB0Xkj6pi7wF+S0QOVAb63wa2Ep92g4j8SNUq/WX8A/S5dcq+C/j3IvIDIqJEpCHekXNIRC6qDPvtah99wMKyo+NQtY9F/ANl1znGu/H2wqfibYgj/hR43cjJUZ3/Rp73v8C3OErn3GZj3f4U+HURubo6xrSI/Fi1bhL/QM8CoYj8NrCVFsy617JqFd8BvFZEYvEhV/9+g339OfAfROTfinc+XSoi3+6cOw7cBvyxiExV6x4jIk/bZB1PAmeKEX1Pdezrqpb9HwD/5Jy7b7xQ1Wv5b8Brqt/1E/DmAQBE5CbxjrUIbyrJWP83smuoBXGLOOf+GHgl3qA/i/+XfwXwwarI7+Mfli8B/wJ8oVr2UPnv+K7uIr57+SPOuXKduj2Adzz8xljdfhV/34Oq3sfwXc2n4Y30ADcB/yQifeBDwC+59WPT3lNt+/fOubmx5W+ptr1NRHp40f6uDc7rnXjD/ab/LJxzHwBeD7xXvKf4X/GtVfD2vf+Bt3N9C//ArtVF3uyxNrqW4Fu234W/lr+DF/j19vV54D8Ab8K3Wj/J6Vbb/wbEwFfw9/j9+Bb8ZngL8KOVB/pP1jn2/wT+L+Bv8C3bxwAvXGd/r8B3x08A7wD+69i6KXyPYhF/feeBN2yynjuWkXeqZhcgIq/BOzRecq7rst2ISBM4BVzvnLvrXNen5sKkbiHW7BR+Hri9FsOac0kduV5zzhGR+/DOjo2cUzU1Dzt1l7mmpqamou4y19TU1FTUglhTU1NTsWNtiPv373dXXnnlua5GTU3Necadd94555w7sNa6HSuIV155JXfccce5rkZNTc15hoisO6yy7jLX1NTUVNSCWFNTU1NRC2JNTU1NxY61IdbUXKiUZcmRI0fIsuxcV2VX02g0OHToEFEUbXqbWhBranYYR44cYXJykiuvvBKfIrLmbHHOMT8/z5EjR7jqqqs2vV3dZa6p2WFkWca+fftqMdwCIsK+ffvOupW9LYIoIs8Ska9XE9e8ep0yPy4iX6kyML97rTI1NTWeWgy3zkO5hlsWRPEzgr0Nn4fuCcBPVMkkx8s8Fvh14H+psv/+8laPW1NT8/ChlOK6667j6quv5tprr+WP//iPsXbj/K/33Xcf73737m7rbEcL8Un4iW/ucc4V+Jm6VmdGfinwNufcIoBz7tQ2HLempuZhotlscvjwYb785S/z8Y9/nI9+9KO89rWv3XCbWhA9l7IyE/ERHjxhzeOAx4mf7/ZzUs1BuxoR+VkRuUNE7pidnd2GqtWcD1hbZ2Q6lxw8eJBbb72Vt771rTjnuO+++3jKU57C9ddfz/XXX89nPvMZAF796lfz6U9/muuuu443velN65bbyTxSXuYQeCx+2s1DwKdE5Ducc0vjhZxzt+Knv+TGG2+sn4IarHWUxhIREAS1Xe1c8ehHPxpjDKdOneLgwYN8/OMfp9FocNddd/ETP/ET3HHHHdxyyy288Y1v5O/+7u8AGA6Ha5bbyWyHIB5l5cxch3jwDF5H8BPZlMC9IvINvEDevg3Hr9klWOvOWtSCQGox3CQP5fo+FMqy5BWveAWHDx9GKcU3vvGNLZXbSWyHIN4OPFZErsIL4QvxE+6M80H8hNv/tZp57nHAepMW1ZyHbKWlV4vhmXm4W9L33HMPSikOHjzIa1/7Wi666CL++Z//GWstjUZjzW3e9KY3barcTmLLNkTnnMbPzvUx/GTk73POfVlEfldEnlMV+xgwLyJfAT4B/Kpzbn6rx67ZPQSBEKm6pfdw8XBe39nZWV72spfxile8AhGh0+lwySWXEAQB73znOzHGADA5OUmv11vebr1yO5ltsSE65z4CfGTVst8e++zwU16+cjuOV7M7qcXw4WU7r2+aplx33XWUZUkYhvzkT/4kr3ylf3x/4Rd+gec///n8xV/8Bc961rNot9sAXHPNNSiluPbaa7n55pvXLbeT2bFzqtx4441upxtga2oeDr761a/y+Mc//lxX47xgrWspInc6525cq3w9dK/mgqIO4anZiFoQay4YRo6HWhRr1qPOdlNzwVCH8NScibqFWHNBUYthzUbUglizo6i7szXnkloQa86asxWtzZYf2fi03jirylbrc16S96BzxL/XPGRqQbyAeShCcraOibMpHwSCODDOrSi/0bYXvKPk3k/BO/4dvP4qeOtN/v0d/84v3wInTpzghS98IY95zGO44YYbePazn/2Qht694x3v4NixY2e93bOf/WyWlpYetPw1r3kNb3zjG896f5ulFsQLlLMRkvEyZzsiYr3yax3XWocTUCLL5c9Uz/H9X3Ci+Jn/BO/+cbjv02BLKIf+/b5P++WfeetD2q1zjuc973k8/elP5+677+bOO+/kD//wDzl58uRZ72sjQdxo5MpHPvIRZmZmzvp4W6UWxAuUzQrbWoI0LlabPdaZ9jlepzAMHrRso3qOxPCCaine+yn4xOugTNdeX6bwid9/SC3FT3ziE0RRxMte9rLlZddeey1PecpTeMMb3sBNN93ENddcw+/8zu8APg/i4x//eF760pdy9dVX8/3f//2kacr73/9+7rjjDl784hdz3XXXkaYpV155Ja961au4/vrr+eu//mve85738B3f8R088YlP5FWvetXy8a688krm5uYAeN3rXsfjHvc4nvzkJ/P1r399ucyf/Mmf8IQnPIFrrrmGF77whWd9nmtRC+IFzGZaeRu18EYCdDbd2432uV6dtlLP85ZP/tH6YjiiTOFTbzjrXf/rv/4rN9xww4OW33bbbdx11118/vOf5/Dhw9x555186lNecO+66y5e/vKX8+Uvf5mZmRn+5m/+hh/90R/lxhtv5C//8i85fPgwzWYTgH379vGFL3yBpz71qbzqVa/i7//+7zl8+DC33347H/zgB1cc88477+S9730vhw8f5iMf+Qi33346QdYtt9zCF7/4Rb70pS/xp3/6p2d9nmtRC2LNGVlPpCLlfz7jwriWSMIjY+u7YMQw78H9n9tc2W99dtscLbfddhu33XYb3/md38n111/P1772Ne666y4ArrrqKq677joAbrjhBu6777519/OCF7wAgNtvv52nP/3pHDhwgDAMefGLX7wssCM+/elP87znPY9Wq8XU1BTPec5zltddc801vPjFL+Zd73oXYbg9IdW1INacNeMtvfGW2VoiOWK1re+C6t5uN1kH1CbnGlahL38WXH311dx5550PWu6c49d//dc5fPgwhw8f5pvf/CY//dM/DUCSJKcPqRRa63X3v11JHj784Q/z8pe/nC984QvcdNNNGx5zs9SCWHNWbGRTHH0+U/d15E3ejP1yuzivxLcxDabcXFmjffmz4JnPfCZ5nnPrrbcuL/vSl77E1NQUb3/72+n3+wAcPXqUU6c2nh5pdUqwcZ70pCfxyU9+krm5OYwxvOc97+FpT3vaijJPfepT+eAHP0iapvR6Pf72b/8WAGstDzzwAM94xjN4/etfT6fTWa7XVqiH7tWcNeMtvY1Eb5zxBKbWOjJtCAJZ4UAZLwuQl4YkUuvuE0Bru+Y+1jv2+D4eqQzT204yCZd/t/cmn4krvteXPwtEhA984AP88i//Mq9//etpNBpceeWVvPnNb2ZmZobv+Z7vAWBiYoJ3vetdKKXW3dfNN9/My172MprNJp/97GdXrLvkkku45ZZbeMYznoFzjh/6oR/iuc9dOT/d9ddfzwte8AKuvfZaDh48yE033QR4D/VLXvISOp0Ozjl+8Rd/cVu80nX6r5pNsywsY93i1S3B9URmdYtyJGTj3e9xIYxUsLz/0li0sbQb0Yp9a20ZFppWHG5KFFfXc636b3QOjxSbSv9176d8aM1GjpWoCS96H1z11O2t4C6iTv9Vs62sZQcc/7xaZPLSUBTmQfsYjUAZdbdHApiXZnmbcYdMEAhJpAjDYM1gbYAwDNYUw7W6x6sFbjPe8x3NVU+FZ/ymF721iJrwjN+6oMXwoVALYs26rBaH0fu4qK1GG0s/L5eH343KKZHloGutLXnpRTOJFJEKVgRkj/Y7Ek1RQis6LXzjYrVaDMdFd71zGrGR93xXdKW/9/843QIMIi+CQeS/v+h98L2vONc13HXUNsSadRlPlzXexRwXjHFhDAKhGYcEpVnuFhvniPDB1kHV+huWGiWng7CDQAjG9pNEaoWNcrwOwLqTKVnrMM6tGOkyvm6jbVef9+pz27Fc9VT/ynvem9yYPmubYc1pakGs2ZBxsVvLKVEai7KnnSMjgVtto7PWLdsNW1G4vH60brU9cdTSGxfHkZNlo6DuaI1Oz3pivhHnej5o5xwiZ3HcZLIWwlU8FP9ILYg1m2Kt1lIQCMrKsrCNloF3jFjrSCKFtY5BVtIvShpKEaqA0loiCVAiZNoQ6wDj3HKXdbU9cfR5JJ7j9RqvD/AgkX4oiWHPZTLZRqPB/Pw8+/btOztRrFnGOcf8/PxZT31aC2LNhqzuasKD4w4x3nbnhOWwGgDt7HKZZhyi8HbEJFI0x7aPq6QO2ljaUXRa8NRpe+XoPS8NWlsajXDZFmmdI1TBcmtyXKRXC/XZcK66y4cOHeLIkSPMzs6ek+OfLzQaDQ4dOnRW29SCWLMuq7uasNIGt2zjU8Gy7Q68R9hVsYbtqptcGovBESArW5Gl34czjl5eEInf96h7bK0jM5pY+a5yrg1LZck+GssiutoRMhLp9c5ps13mcyWIURRx1VVXnZNjX+jUXuaadVk9LA9OB2WPe3NHoTGjckoECYRWGC6XVSKE6nQ5re2yPVCJ0CsLTnYyTg6GDNOSvEoNpUQojEUcvnUZqmWnSaQCQhUQiDyo6zwe0D3iTB7oEbsm9KZm26lbiDUbMu5xHbUWR97jUYtQa8uw1EQmWOFEacYhaaHpFyUTcYQ4WMxyCmPIraUdhgyNRiyoIOCKvW1aUYTBLXfPwzBgmpg4VqS5RhzeBmkszTCkmYQUhSHTXkDj+LQQjlqZo/qMe6DPNMpmPfvhdrQcd4X3+gKlFsSaNVn90I57cFePVlEiTCTRsjCKg9JamklIFARMx17QBlnJoAq5ESBF08tKEGiogCQOSUuNC6ARKNJCk5cGpbyIaWsx1tEI1HILUGuLKCHGxzJqbZdboKtZnVxiLZvo+PmudU226nk+197rmo2pBbFmBZuJ19NjXVglgsG3vEQJrcCH1ATWi9J8miEO9gYNJlsxSoTcGLpFiS40E3HIQGvSwhAGAS4AVzqCWFBOKJ0hL6oxyyrAOMuw9PZIAGMdE0lE0ggZDkusEorM4AQa1Rjb1UMOR46XM53narbD83wuvdc1Z6a2IV6AbDSKozS+ZTXupNDaUhSGNNf+XWu6eUE/LVbYD0eCM9SaogrOjsWH2PTzkqIwSCDEoaIRBCDeE50Vhr4p0c5SaENmDLZqeRbaogSGRjMoS4x2aKqQHOeWg7uHw5KB1jjjiCNFUAn2yCu9+nxGQwHVWFjLZmyG2yFktRjuXOoW4gXG6i7b6pEmqwObi8LQzYplb24SKpQTrDg6eUkzDcm0IQoDmlFIaSylMRTGEuRCIwpJQkUYeE+0NhZjLRIIxloKAxNJhHWOonQ4sV5ws5JmrOj0C/ZPN1AIzSgkUYq01GSlJgoVzSqgu3DeJtlohGSZJreW0HixzLShFZy2HRrnlrv1qz3lG3Wja85/tkUQReRZwFsABfwX59wt65R7PvB+4CbnXJ3K5hFiLdFby5Y2YjTOeBQgrURQStGMQ8pKzJqBolS+G1sUBUXVEkMg1xZjDGEjoZ8VFM4i1scfDsqSfmaIlPcYN8OQdhyRWx9PWGohUYpBoSm0IXeWSIRIKUpr6RWFX5c7Ds4ktMUnSlX4QOxBVhKI0FQKFXkPdBwEyyNhrHUrPOVBdHqkTHAWw/tqzk+2LIgiooC3Ad8HHAFuF5EPOee+sqrcJPBLwD9t9ZgXKmfjnRwf4bH6AV8tjuNd5VEozGh9YXzXNzeGyTAgsIJCMM4RxwptLDgY5poysuTacLKTIs63ugaFxTlLvyxpqQjE0S0ysswRKMeeZoMkKjDW0YwDstzilCWWkDhQzCTCYlpgHRxsN1ASsK+ZUCQWhe+unxZinzknCgNwEBpH7iyltQSFj200eJsj+HhJrH8fH0tdi+GFy3bYEJ8EfNM5d49zrgDeCzx3jXK/B7weyLbhmBccZxMbN152M9lbTGWLG3lufbfX2w2Ho1AXCSgKQz8vWcpzLI5YAgprybQms4YkCAgQ9jQTJtsKREAsudYUpWMxTdHOMh03ePSBNhdPtWkmXtSc8x7qhUFOp1eCOKIw4OBkg3YUEYjvrscqYFDlS0QgLTQn+0OK0iAOppoxkQT0y5Jc+7CbUaac0Tjq0Xjrkf1x9fUZDzWqubDYDkG8FHhg7PuRatkyInI9cJlz7sPbcLwLkrNJS7XWyI3xFF6rg5iVyLJIwOlWojYWFQpKBTSUQpQQijDMDIUxZNb47mgQYI0jMxbjLEkUUJQOrR0B0E01U82ANPeZbiIVoB0sDFIwghWLtWA1FFISRgHiBBFYGBQUTpObklP9lG5WMNdPyQvvKBGBwhg6RcGx3pBeXpBbQywPnr8lidSKOMXxazC6NiPq4OwLk4fdqSIiAfAfgZs3UfZngZ8FuPzyyx/eiu1CzjY5wYjxrDTjXuRROeMcVHF7xjnKwmCc41h3wP5WY3nInC4N/axgaEqa2oteo6281zhWZKWmFUZESjjeHeCChKMLQ052UmZae2g0IQ4UoizHFzLm+zlhDAtLBRpHEgpz3QKmhSgUYiec6GRkukSZkKVWwd5G4uMddQG5w2hfZwU0wgBtLVlpiZQQO0daaAa6pG0imnG4LIjjqclGrDYt7Jq8iDXbxnYI4lHgsrHvh6plIyaBJwL/UGXuuBj4kIg8Z7VjxTl3K3Ar+CkEtqFuNax0pIxaTWmhMc7RikJUIMsZrZ1zLOUFDRVQVCEuRVmF2qQFmTG0o5BGGDIscjJrMMYy2xsySA0HZxqoAL41N8BYx6luSpQ4enlJmjsKlVGWMUNyLt3bJE1LTnRSkiSgVAGF1YShcGop9V13bSi145I9MWGoGOaa2UFKqg0zTcNUK6KhFAaIQt+yDAWaYVg5Z0qGqUHHXgBblRlhFEM5PoJlNIplWSzV2qnEapE8f9kOQbwdeKyIXIUXwhcCLxqtdM51gP2j7yLyD8Cv1F7mR5bVDpVQBURVrF4QCKIht4ZIApqRohGGTDY1w9yQFRmNOEACoR0oEO+IiUIhcDA/zChKx1Keks0Z4ghU6FAhDLKSxCqKloHA0Ioa3Lu4RL9nUI8SjswNEeVohopTnSEOKK3GOUE7w9RUxCDVJHFIoX0c40QU04wDFoc5xjkunmyhcAg+lGcpKymdn4cl1RoJHbEKfXdfa6x1TMQRNvDnPwrBAS9449m7x6lHmZz/bFkQnXNaRF4BfAwfdvN259yXReR3gTuccx/a6jFqts7q0JvxMb7gBSEKqjAVUSiEA+0mw8o5ETgBB6V1SGDpZDmdTPOtrMfCoODivQkHXIvCaY4s9AlDRX9YYnFepPIhnSXD9HRJf1iSlQW9XkQvTZlsNlgqSow4mlFESEjPpiwNCgShqUKMNWgDoQODIVQRZVkyCEvm+xnNZuinJ8A7eRyO3FhiUexrNmglEaWxhA5KvOe51JaJOCKOfVadojB+pIxxhI21bY0P5xjnmnPPttgQnXMfAT6yatlvr1P26dtxzJrNc6bQm6KyGYZUmamNocQSBoKzUBpHGPgwmW5miEKY7eZMtv0olIlE0VQRPYakuWGhlzIRB/TCgCwb0i0Nx+chDITJ1j6mmhHtJKKjc8RYBumQKIyZaTdoRSESWOY6Kd1+Sl5kPGr/NHnPsreV0Csz0gxiVaICmIoToiQgLzXHlwaIDQgVtKYUbRVixGIFitIw1JpmFGKr5BHB2NA+rS2FtYRWKJwl1Cuz/IxYbZtdL7SpZndSj1Q5jxlPya+srGgRjidAcAIhwuwwQxvLRCOkNI6edbRCxUwz9gHWxtFOFMZaBkWBRZGXliCwnOgNGAwNcROSMCAtDAv9Pi5QOFeS5iWXHJxiYTAkTTVWNIoQbQ29NGcisjgpmcuFo4ElLx29vMuwaBJFMYEoGjEsdizNCUNuIdcBuS1pSUJaWqyG/VMhBMJUEpMoxYleSSwarQKscxhj6RYFiSimGjHdrCAJFYEIjdALpDNj87NUmbdXT5sKK50wtRieH9SCeJ4yyi4NLA9Lo8owHQSCOMiMIQqC5byCzUjhooC8MCylBaWzHJhsEBUBR7spsQp41FST+UHB3lbC0W6fVhRRlI7Z7oCJZkRkQ9qNiDR3LCwOacTe4dErM1pLQhQ2sZRoA1neI4oiur0BRbNgsa8obQZGMdEIGRaOqYkSFxj6w4zFfkTfDjh6f+YDtQ+0MEtthpmm0JZenpM0hIiIbljSjhyBONqxTymmqzHVxlls5ZEOAiEK/IgcFH46g2qYocInrtCZprCWhlX+OsKD5napxfD8oBbE85TVSVIDTo9bHmWoaSg/73FaaEprSZRCO8sQQ+ksxjiKwhLFAa1QkVtNv9QspRlxJPR6mmivMNAFKIdEjlOLQ47Mdz64Ne8AACAASURBVFBSsJSVTJoGzZaijXBykNFWBXEc0xv2OdWBoMzJHFwqJY1WCH2YSw3aGoyGnmgGw5JQxUxONZlJGizaPhiL6CkW8gHteIrFLGUwLGmoiIMzAaYM0cqSasNCmtEIQ7S1zKYpjSAkDBy9omQ6if1452pEThwExLEiL81yi7AURyP01yocu74bJclYq2tds/OpBfE8Zty+pUSWkxqEUUCZ6xUPdSv0P4Wh1kzGIc7FdLOSMBTmhxklmiy1PFB26XcNklhcqLn3aI9T3T4tEeyB/ZS2AFcwGFqmYoW2OfefMLSbUPag14DZBwoW+0AJ7TZIDMMUVCNlYKlGrkBrKiTra7qF5pJJS3eYoSUmbMTsbbVotGAwCJlLh2AVe9tN9k00mGxGPhOPiim0YZAZZmYSCuNH3DSjkKk4QgJBVQHpo5kAC2sJtKyI08T49/EUYuNxjGvFfK41XrwWxZ1PLYi7nLVaH+slc9CZJjOG0J6eIyUtNWnpnQ2BCGle0q26lZFSWGs53hkyyHwMorWQmwI39A97oxEzmQs2CFkcdMnTAqWEkpLExhzvGBZPwcwemF2ChsCgBFvA9BRMTEM28Ov6JUjpf5RLwBVtIQ2hcwyKzNJNTzHdDonjkCwKGC5GRIElYZK4JVw82WaiGZEXmq8eX6ShAg7tn6BT5AznCwptmYxjUI5UG6aTmEgFy/ZCgMD5QO+8MMsTVy1Po4C/pmn1Z7JW4PZqe2JtX9xd1IK4C1ivy7VW62O99F6j+DpnT08W71w1i52zaGt9Ci7rWz4TSUSaaxYHmhO9PkYLYWzZP9GiO1TYQNOOY04sdSiLABtobCj0c02nX9JIIJoIcLNQKihKyPpgG6AspBb6fUj7sKQhBiYz6BVQaugC2bDEOej1/PI8hftPaCTQPOaijH0Hp5hsNdGiORBNspBl9PICFQQ0IiEKQva3mwyLklPdnNIYpvZHTIYxIlA6S5n5xBAKIY4UpQCVA2UklqWxYFg2QYwPd1yLjTzTNTubWhB3OBt1uVa3Pkbd39Wp8kee0pHtcJS4Nbc+PT86oJPlNFRII1IUxqIQSuMog4LpuElXhiwtFQwGOY2oQdIIKApv31PNgIZzTLWmKcoTPPB1EGBhKqNXQqfrA1QDARXDdAJzszDQfnK8CEiBzhD2VhrTA+Zn/foUmMhBJiASaCjoWWgMBwz6OWVh6aRDhj1Dagr2tJrsnWgTxtAvSorSsbcdUzjLoDAcH/SJJMLicyjm2o/ZvrjdIkTQ4oirwOyRuWF8rPfISbWRbbC2G+5OakHc4azX5Ro9cONiOPIqr2jJWFn2LI9EMst917mXlzRDRRDAMLUYVdKI/GROp7oD5gc5sSgkMhxM2gz7OWlu0bpPP43ReojV0Ov16KZw8R7NsO/ol17EuvMwoWAImK5fFnThJP5zD7gEmAf2AXOAWF++BE4BA3wGkhZQFtBuepvj7EnoLhr2HDSEi4sc6wbMqIBChFMLBYUxHJQpTsqQy2Ym2T/ZYGlQ0MlyBqlwcBJKK0RRwGQjJgr8nCzWuWXHyiijdmntivRgo9yJG4lhbTfcndSCuAvYzBCy1V7lUTnwo1CSMY9oYS04x1TDZ6pWQUAz9GOXT+UpS2lGLzW0YkVWGBb73lFCEDA1HTHoZmgz5J7ZJVoR5DkYA8dPFtx3FCyQ48Wsa6CzwbkdHXtv4MVy9KNUeGFsAseAIz3Y24P9bW+DjBOQAo70NQsdOHQIGgFoJyRDRTbRoL9QoLVlsUgpcphKYlTkr1d3UOBwhK2ApgpJtabUliCJyDKNE053m9n8xPe13XD3UgviLmS9B251N3mUoGCUAxC8IBTacH8vYyqJiKMAcZZGHBIpw0A7bAmNOMBZYaBL+t2UuWGXYa6ZaUTM9nMuasfgoMjg6AnoD+F4JX4zQIIXxo3EcDWjRJm6el/Etw4tUFDZGUMYDHyOucvm4MAeKDToHBY6sKcJky3IMKT9Ah1a7j4xJD4ZctlFMzxm/yS5tiymOf2yJAoCTtmUvGGIlXegiPPedlX9yTSTcNPd41EA97j9tmb3UAviDuZMcwevx7L3U9tlD+ooD2JmDAFe8FqxYlhqOsbQT3MGmeVUb0BmNI87OMNinvvA7aYiGSiSdoC4gIZydIxhb6JIjSFOoK3hYOqdIRbo47vFW6GN3980Xixj4FTlcNHAt4D9pyBqQyOBUEPhwBKQEKJdSRI06GZLkDTZO5GgneVEd4i1jv1TDZpxwCCz6MgyEUUoFSzPIhjI6bCk1Vm1R4y31q11DAtNi/B0mE7dUtxV1IK4Q9mMHWq1YI6nrSoKs2w7tFV6qzD0gSNDrdGlpUPJoCg42U3pDUus8vOaWAc9XXB0vk+nOyBNM0wohMZxajjApJbjCwVTk9BbhE7qQ2kc/tXdpmsw2s9C9d6r3qPq3QFHOxBVzdAkhUsETNuSmpzufMpUK8M5IYiFk52MpbRgoZeSxDFTzZhWLMy0/WPQyUvfag4VSawojR/ZY52jGYdr3ofVqdVanG6N12K4+6gFcYdyJjvUWuE1o7x+RWEYlhrtLFMqxlpHvyiZICJRisIYploxxlhKpYiDgJnJGFfCvYNFmmFMv1+Sm5KsSCkFmg5KFyDGkmno93z84ELuW25HHoFrMj4uJMZ3p3O8nXECCCPIDaR9xyAoiEMY5AETrYSGiiicQWlHqi2XziRESjjVSWk3Q5LATzXQrMwLWluSSC2HKK01KmXcsTX6PB6KU4vh7qMWxB3M2RruR3MMF9bSUIrSyfJcIjYvGeQlqdYY61P7a+fnRTZWmGlHmMRgZwUbG44sDOj1U450BjQFFjTEMRQFnJz1LcIm3nHySIjhOMXY55Hd8QAQpCBtwMJsFy7ZC0EIsVIM0pKAlOaeCSKBiWZEZixpoZluRgQIuTUM8hJbODpZyXQSsW+ySQs/vWpoV4Y45aVZMQ9N3SLc/dSCuItZL+SmFVfD8IaatNC+uydCryzAwWQckVmDKzQNpbhoJqGTFaSZZpgOGZZC2i/J1JCsB0EExxdgcgqyDE4OfPd1mu3rHm+VAZA7OD4Lly6C0T5e0eqCiUsbBK5gtpOx1B+Q5g6JhCdctJdWM0QCL2QOSI324liUZFVL0VpHrv3EVuNzsoxnDqrzJJ4f1IJ4njA+jGyUlGCU8FVrizg/TSciRMbPppcaH7Tcz3PmOyWNpuPi/TN+svhJTXchpDMzRzEA63zrsNR+WJ3GO04SfNzguSbDO3MAZrTvRtuT3vEyyLtcdFFCwwr7L5pmZo8hMhHHugMm44RAhMk4ohH7rnNmNWnpaFVimBnjE85qs64HebMjiWp2NrUg7nJWpPnCp7Ea2b5CFWCM5VSak6iAJPSZsPuFZmGYMtNo0Gw6rIWlZoa1IVEiUEQUgUE1A+QknJqD2R7Q9cIz8h6fTUjNw40d+3wKmMKLdjOEZgJ7kohms0WUCBe19zAwObGLEIE0KymNYdImFKVhb7tBEnvTQy8vmExiSoRcG5rWPzIj51Udj3h+UQviLmc8IHvUhSsKg6um58xLw9Iw4+BkE4Uw0YgphinD0pCVQ0IVoK0mkYgjnR4EMBj2mV3KyYZ9cgdxCHEAs9bHGO5kGtVLgCSE6bYXy57JyXuW3LYxpWM6bhFMWRphxD3zHfY32hjjcM6HI4UuRAn0C810MyEJ1Iqg7NFwSNg43VcthruLWhB3KJu1PY0nbxil9yqs9cPPlPLJHJywmBaAn+s4USGXzUyQlSUnuinHOn1cFXv3jSPHGJYFegipgflFGHR993in2As3IuO0oyXQMBXA0VNw7HjJoUtLrlQBYbtFEWhmlwxLSU5gApotQKBIS4alIYoC9rea9MrSmxyUT6prnE8YK0oIRiOB6nRf5w21IJ4DziR2m32oVidvEA1RrAhtldorLVAqYE87YjKKGeqShWFBK1EYa1hKNe2mIuoqRBxhW9CFod8FbXxShrm+F5hRMMluEMURDj8dQLvhQ3LiBLp5STTosy+cYJDmkPkW9gPzjpkk5tK9k7SSkMkoppVEfhZAZ9G5RURoABpHTACqTvd1vlEL4iPMZsRuMw/VcvbrKnmD1tZPCWB82qq01PSLkjgMUCiGpsQ46FaJU+cHBYvDIc0kpFfkiIGgAVE7IkoNQwOF8d7k3rq12NlMAtbC3JwP1cly2D+dU4phfrGLi4TJuMklhy6i1I64oZhMYjBCmAR+tkGRyhkFEUKjES6bJPLSe55Xd51XB8uvlyasZudRC+IjzEjEztSC2GwLEiA3hkSp5SkBSuNdDK0oJFQBWZFxspsTCTQTxUTs7WZpZljKc/pFjiod/YGm7GR0ej58JcIHPpvtOvlHmOOA7cMDeLvidAeSvdBb1CzlPi/j5RcHpLpkf7MFTphPU/ZPtMi1pp3ERGFAFHjRGw2BFOXno4bTQ/pGJovxPzKt7fJQvloUdwe1ID7CjB6cjdJHnYnVw8WmGjHgWyxoSzSaHc5BVmqSKGQi1ogCscLx/pBjC0OMKwgkIjTC3j0t8lOLMBEhSyURMDkJk72tj0k+V/SrF/guf8fAkRNQBHDxFEztEaYnFaIVhbVEoTDfy5lpRpzsWfY7h1IBpbYcmGgutwZ1psm0z6g9yjw+GiU0fk/DMKjFcJdR36lHmPVSz2+F0QM3KEoWs/z0sDMcJzsZzjmiUOE0WHE4A6XWDFJDO1GIWNLC0JposTeOmJqAWWCp50NYzgcy4H6g2/fOlslpiMSxOAzoFH3aSYixcKIz4NhCxmw6AAeNQC3PN5OXhizzpohuUVBoszz1wHr3tBbD3UXdQjwHbFUM17JDhmHA3naD7jD3iU6t9zj3y5L9LiaSABMaOoOSZhIwM9kgmyvp5SlH5jo0GgNia3hgNuOu+3yM4eLWT3VHMRqNPD0Bgx5MXdLkwL4ml07uJdOadhxyyZ4WYQNCHdLJCgpnUU5AfCuwGYVMNWKmiFc4Umrv8vlBLYi7jHFnyuoRE0VhmBsUTFuLBEIjUOxvN+jkJcNMc6Lf5/hcyuMPzXDxVJPuIKWzmJGbnCkUJwYZS9WwvN1qNzwTBX5887FT0M9SkijhqJ4nL2GqlfCofZNMqJhmK2RPO0Gcj2MMAqEdRStGquSlWeFIqcVw91ML4i5idfJXqnRfo7CbMAzYNxGTBIr5YcYATSCOonTYwKCCAE3Jie4AbRyNOEZPaFrDhPnhkHvuhYnWyqwy5xOC7zofOeaH9rXb0Bv0SLOcOApJQrXsLBHnWBzm9LKSPe2YZhg+KLONEoFg7aw3NbuTWhC3kYf6MGx2uxXOlNE22i6H3Qy1JhBBAmFfq0HpqnVkzJ8s6ZUFeVlydL5LiBA3Y0prkdBx/CjYHEzsxyefjzi8KcABl7YgacKwb5iZEOIE4lhhnKOvCxaHlhJL4iIm45jCGsihacNlB4oTPwfMyEkGrPD+byZsqmZnUVt8t4nxLtTq5WfarjR23e1WL19rSFiujRc2CzjQVZdZIUwlMQdbLQgsEjiSOGRqosH0dIP9kw1MAQ7D/CLca+GrHe98OF8ZTUUwdcBPf9ArIAhKupmr5mPWdAcFJxaH9Aea6SnFnomY0ljmehlpqSlKQ2l8wgxRgjOns96MUrCN7un4/Ru/p2vd85pzT91CPAvWG7OqtV3z3345g/VoovgqSHc8WHd1XKLWPoZwNP2lE5bXj6f7GnemNJQijhUpmlwbrPatnIVhSaAsrTDCBdAbGALxGXAWFjOWwiGdYY/evKHUPpD55MN5AXcABt9KXDoFSqA1BQcP7Kc0JdONmLlBThQG7J1ImGzGtMOGn9PaOXKrcdX81rbyLouD1BjKzNKMfd7EJFDLk1ON7j+sHOJX2xt3JtsiiCLyLOAt+InS/otz7pZV618J/Aw+Acks8FPOuW9tx7G3ytlMHjT+4wYfhqFEGJaaVhQuh14UhXdJpKUmUQoUDIclmTU0AkW/LJlpJstpukbZaqx1zA1SkkChrWWiEROpgNL6idLHH7Ik8skGhsOSgdaEoc9mM/IsF9biRDPf1/Sjkv2tBGdgMU0hgKV8QHdhwOyspTf0jpQLpb0SAv1q/hdzFL7EcZIEBjOG6ckGk3GbPZMN2nFEK1J005J+WTLXzfx0AlHEROS7zhNJ5JPxGvug46yOTVw9xK9m57FlQRQRBbwN+D588uTbReRDzrmvjBX7InCjc24oIj8P/BHwgq0ee6tsFCoxEqqRyJXGEinfuhu13rSxSJViKxfDsCxpqpAHun2aKmR2mHKg3UQCR29YogKhFYcspaWf70RBIwjpFDntMEJby9dOLnFguoHR8CggCRVhEBCqgM4gx+DTTo0eNI2jXRn8l4Y52lmiIEDCkEwbOoMerSQmiQMslkGmKXWBKwzdRYtTEFj/Q3jwI31+4vDztOwBRGChDxdFMDUV0W4ndAc5e4qECZWgMUgAe5sxSvz9CxGUCoil+m1YS+ksTVbOib36d1WL4M5nO1qITwK+6Zy7B0BE3gs8F1gWROfcJ8bKfw54yTYc96xZK6nn6mF01rrlbmuhvU0wUgFZoTFBwEKW0c9KQiXgBOccnSJHG8NS3xAnjruOLhJEhiJ3JE2FTiEtCwgsgROmZybA+m2v2D/F/fNd9rQb4ByzSzlxtMdnVVkyLA4LjDVcsXeKTBtmWjFh4Mcq7202iKthZUEgREGANQ4EwiAgDoVGHDPZVHTSkmYU0kgCjA7IyZjvQzqE/dPQ6vnErxcCo/jKGUArmG767vPiYootAnIs3X7JRCNn/pRlohVxYKLBRRNNGlU28iRQGKrZDJ1jIo5WxCOOWvA1u4vtEMRL8cNFRxwBvmuD8j8NfHQbjntWrDUpE3i7zsg+p7UlzTWnhkOUC4jDgNIZQgm4f6lPVmjuX+iSpQWpzmnGCUvDPg8c7dJLYWbCJ0S46x4/wkPwiUoD/Lhgg++mPXpygTKH1MKhg9DNQA/hwD44cDBicbhAv2/Yv3cCJdBdyrhnX5OJuMXVl+0jcAEqCCiMTz6AFS6ebtGMQ6SAYalJjaY31DSigLlBzsmllMv2t5hOGswvdlCSsL+Rkk1AUXUf5x7pm3KOWQLyAUxGPtVZs5Vx8eQMe8OQzGm+eaJDM4iZakec6qRcPNMiNAG5MdjIkWmDqzJqR3J6rPOI8SkGanYHj6hTRUReAtwIPG2d9T8L/CzA5Zdfvq3HHu/CLMfzjc27m2UaJ5CWJUu9EhVBPiw5diplqRhwZHaOe4+kWA29HiwMvcH0flZOerSatbJKz4+lj/n6sbEVR4GjJQkle4GLopSwBac60Ih6XLEX5jod9uyZ5tLpJoO8QRAEpIVGhSAiGO2Io4DEBSymBRONAGsjHENOLA3IjWVQWpYWUpYs9E/CbHHhtA7HsXiD9mUKphvQimLyVBO2Qwb9IUEQsW9/A8GxOCyIwwDbhlJ7s0SIEEXKhzqpakhmNOb9H5vnphbF3cF2COJR4LKx74eqZSsQkf8V+E3gac65fK0dOeduBW4FuPHGG7fVxr86jGUkhtpYuoOcXl5SGM2xzpC5YUocwrGFIf/8tQc41YEvzvtg3keCHJ+p5XjJaUUtYeEkzHYWmblokUsmQ/btm2Tvngke1Z5mUJQ0ghAJoJ9r5gdDjnX67C0bzEyExAnMnRoSJo44MJTWx9DFISwVG4v6+coefMvdOZ9dm1DR7acEAQyN4WC7SRAKD8ymTE+GNKKIWAW0o5C8tKjQh9yMhkqOi+F4JvNaDHcP2yGItwOPFZGr8EL4QuBF4wVE5DuBPwOe5Zx7xPMFjBwhI3sPDgprGGSaVJdYByeGPfKh41h3wN1HH+DEccNdJ3ZWTN4cMJcB34InhJpmssijv21AcXHJ/okGg9DPGBcGwnw/B7EM84KjCx3SXLOQLjKcM+Sl5fgs6BIWigvHmbKaIf7cE8BGQpFlBFFEXoSIFg5MtVAOgthxYLLBRBIhDtpRRGYypuOEOFZ004KJJALqVuFuZ8uC6JzTIvIK4GP4XuTbnXNfFpHfBe5wzn0IeAN+LvG/Fh+4er9z7jlbPfZmGJ/AXSmhM8yxOIaFoVPkFIVGO8PX71tgadhncaHL578G927hmIfkFM8IDtMm45jbz232BrJtHv/xFQ1oyL9WELt5ULC3MUEURExPKoZFSYOQjIJcG3rDLoV2tGJFFDumJhyLiz491iPV8t1pnMTbeY8vQuEcl11csGc6wgpMTiVMJIojCxkNJXQGhrQYYKu5rLWBsEr9lYRq2bE1muCrFsPdiTi3M6PPbrzxRnfHHXdsy750NbytnxUc66RMNBXNUHH3XJfDd59gYdjhW7MZx74F39jCcfbT4c3RW7kx+AYOCDHkxAQ4/kz/EG8xz8c/gtvL5cC+abj2csWBR+3lQHuaqYmEbprTWSromy7H5nrYwhDFPgXWV+7xjpSFba/N7kIBe4G9IbRjuOJR4CI4MD3Nt11yABG4aKZNIwyYbCRkhfFZtQPY32oQh2pF13j8D7hO/bUzEZE7nXM3rrXuvBqpMj7h0rgnedmR4ixh6Ie2ffV4l6U8pVN2+ZevZ/xLb2stpT10+dvkN9hPl0hO54qJqimPfi78MAdlid/UP7OVU1yT+4H7O3DfvxiuunuWxz92kSc85hBpbhiaFAixmeHkAP71qO8qXog2w7Uw+KB00RBFMMxhb1vRjANyazi0Z4IwCFjsawiE6ahBq6FoqdNhNqPpG8RBHCmU+NjE1dMJ1Ox8zhtBXJ0JRlkhLTShCkgiP5QKBxrDXC/ni/efoN/rcWou55tbFEOAXw3/in2rxHCcluQ8T/0j7zdP44vusVs82tosAsEQLk019xw5Qfn/s/fmUdKld33f51nuWtVVvb/bzPvOIoSEhIQWBDJCQZbjsBiUxNgSjg1EZodzbBKfBLPYjmOMQCEkGAMRoIBxTPAhYIkjAhgERIDACIQYtIxGs79r713LXZ8lf9yu7uqefpeZt9d36ntOn66qvl33uVX3fu9v/f4smKJEaMF6AVeuvDizybdDAaSAkpCX4LQk0iG9Qc6gHTLdCmmHCZHS1FiyWtANo+1kihcQComXO0Kxtr5XBdTubdwzhLirM2CsHzjSiqqylMZS1JZe33K5N0A6w/XVkkefvftJcikF/5X6A8KbkOEIETXfqD/At9X/8C73eHP0gMc/A9faBUJDPYASz2rVlJhMsD80EMeQFZB60KlisFHx9LVNpFGcmUmJQoepHIWz5LEh3JrVrIQg36pXHVmFk6TK6cQ9Q4jw3BhOpJsA93peYnFoJelMSbIbll6dsZ7B1du/7W3xMvEMNYrkNtsp4fkC+ckD2OPNUQOfcNDpNS1qp3Vi3lFDAaIEHTczZHprOUaVzLfOMNVSeCzDXLBelMy3Q4aFQcc7oh2DsmYujbffbyL9dTpxTxEiPHcAk5SCrvPk1nB9kJPVhqrKKTdqNlcOJsMqcfg7TJbII5JQOE3zk48bAU22/cYA5iQIW7PZW2dYw0yc8eSyZ2OQcX6+S1sHrPZgM6x5qZ4m9E2GeTRsau9o0r2YjBo42bjnCBF2352NcahAkqARgWN5qaBXlFzL/IG5kE/6c0R3SK2PuQt3tN0C63yefByJ5xP+Is/6M3ezxAlugXrrpwW4HFZXmrbK2sD89CZtbxgOKurZlDiKGBQVohIsxzlJpJklphOFu1r39iZUJqMGTgfuSUKE3cXYwkO/rihyj9aSllTYcmdE5d1ilS5/4F7JW+RHudV5PvAx77F/45bvdYFl/kXwXv6K/ATV1tcTYPhL/yDfW7+TT/mDbWmcYAfLQFhD/xqkQdOX/pFHCzQFYQAbvT43zszSShOUEoSxZMYkBFKSBBoEJFviD+Nu8V6rcEKGJxf3JCGOxxGNd/TLivWsBOGRGgrpSMPGVTqoouR/af4OXxh+ghb7diVSeM2j/j4+6F5z0/e4Tyzzq+H3MEWGFm6X1flaPs3/E/5T3lF9H4/4hw5o1ROMw7LVc+pAllvnxlZafhbo9aFXrpFGUNbQu5jzykvnkDTF2soLzrRbWJrzLzaKONb7qipNcDJxTxLi3jii855BVdHPLav9Ep8LLpyPuO9yeVeF2ON43F/ga6rv5WfDHyKkpi2a+kPjJTWaj7iX8i31d+JuMbXhfw1+nCmGaPHcOKMU0KLkJ8Mf4YvKH+UwCrwn2Jk2uLdeYA1YK+CRp5pPPgHychWtBee6MxRLNQkxLzlf8eBMF70lHCxlU6A9mrsyIcWTjXuSEGEn46y1JDKKSAXMtyVJqIi15MbmJmcWlllePrj5w3/hH+YN5b/mrfLPeJv6Q9rkPO3P8H/Zv3ZbV/eSuM6rxBP7kuE4ugz5K/Lj/KF75QGteoLnC09T3P7hK7C2ssLFcys8cHGOh8/rbZ1LK5oGgNLY7dKcCRmefNyzhDiueB2Gik4UUAYSj2Oh3aJf1Fy4EJAmNR985uBcZ4PmN9wb+A33huf1f18oP4m9g5lfLQreJB+ZEOIJQAF8rITNpyBur2KtZXVgAJhuhczGMfgm8zxe9QCT0puTinuOEHfNQdmacxFJxVQSkvWHLG1WCAGfc36WM9MxH33sGV4zyLm+1tQkmmNad4C5o5IcIbjjjPYER4OngLnPwNqZDR5yFUvzKVkdQwfm2sl2Gc7NkiwTnBzcU4Q4fqJBo0YyaqVyzjMdx5yfs6wOK6QH6wSddIYHzxc8eMFz9Tr8/vLxDFv6jL9wRxbi0Ef3XKa5Rc5/qX6fL5aPIPD8gXslv2y/mAHpcS/tjvGnBUw9DRuDDPzTXDq/yEI7wVqHVXLXhTYpvTm5uKcIce+JNmqfGp9Ud/90h7YuGJoaJRT3Tac8e6ZLXlc8cHbA7JM3+NBnjl4F5o/cy+mT0N4Sg7gZBJ5ftW88olUdPt4q/5R/FfwYHmiJJkP/JvmX/GP9C3xn2yLAFwAAIABJREFU/a38urvVNIqThT6wvgrPtoZMJUPy8yVDo/GC7cLtydS9k417ihBh94k2fvKNE+VMO2aGmOmoIgq7LKQZg6rm8ShCa83U1A2uLhsGPfhI76gEVAXfW7+THwv+FYnYX4sm8yE/ZN5x4NqKx4XXiUf3Pd4RMf5I8BNs1m0+7F5xHMt7QXgCyJ+BsLXE/fOzhOcCNIJcGqQQJJGekOEJxj1HiPthb5Gs9U2xNrKRgJ9OY2KtkYuSB2aneMX9CzyxukmWl9z39FVaCj71LHxyvYkx3tqGe+H4bfc6/lH9zbw7eM8uiynzjabij5iv5mftlx7S3o8e3xX8wk3JHyARFf9Y/zu+qvr+I1zV3eMa0N+AzJf0ygqpJFII0i1V7UlC5eTinifE/boEApqB7wqBF4CHNApIAo2QgrI2RCKksgYhFdprHrhY8xZjeOrGdZ56CoSF1V5TsrN6gOv9gHsjHyxfw1epD/Mm8QhSOP7MvZRfsm9mk/aB7UfgeK14jAtilRLNn7uXcIPZA3v/22GBDV4lbq9L/lJxmQssc4WFI1jVweHj1+Chxy9TFZ43PLhI2mltu82ThMrJxT1PiDcLYFvvd7kv490tSaT5bKWoveNsJ2G9KFFCUZqabtzm/rlNOmnKysaA0lc8+2wf62BlFZ4c3n1dY07ML9q38Iu85S7faT94vlb9Jt+m30+bfCuBJAgw/LF7GT9g/psjSdrMi00q9G0z5hWaRbHBFX+6CHEJ+POna6xa4oEzU1ya7mKlR7OjmTjBycM9T4jw3AD2fiQppUCOzWoOA4Wwgvl2ymyaIICsajoPsrzNTCdgpTfDQjtk7SUVSsKzG5s8cXWFj36qz58cVLX3AULg+FH9Y7xV/RnpPq7qF8tHeH34T3ln9T/wx/7lh7qWdd8muIMipwDLGlOHupbDwtIauIdqBn3DoKqYkvdG7PdexouCEPfDfnfo0WvCgBfPnZyWxgHTacRmXqK0ZD62dJKIi9OOYV0TBgFxqMmNofx4zl9kR3Y4d4RvVB/greqj+5Ih7LQH/kz4bt5c/m+s0Tm0tVxnjsf9eV4hnr7ldlf8PE/7s4e2jsPECnB1uebZmQ3OzbS5f7aZ3ewFu2aET6zFk4PJFJw9GEnCj4YEjU7W2jYzMuJYs9BNmU4izky3mvEEgUJLyVSkeeWZBV790Hku3Qcn6TJWWL5V/yqp2F98Yve2jneoDx76mn7IvIPchzf9e+5D3mW+5tDXsQPPAhssso48gNqCHFAColjTiiXCC/LaIPzYnJ8tRaYJTgYmhLgHUornCHyOXhsv4xmRpdYSJQRCCDpJyFwr4bPmZ3no/DwXZ47rKJ6LL5aPoO+wDycRFV+vf/OQVwS/517NPzNfR+EDCr/jrJReU/iAHzBfw2+51x36OiSOr1W/wYej7+BD0T/g96Lv5CPRt/Id6lcI77Ir6PGnoCpr8trhhac0zTiLkWU4iSeeLLxoXeZb4Vbu9H4IQ8X0VnwoK2q8l7zswiLOGwa/v8EnTsC8ofvFEvo5Gi43xzybND07h3ux/qJ9C79rX83f1f+RN291qvy+eyU/b/4615g71H1DE1f9yeBHeJP8y13Wc0LFt+v/wF9VH+Ud1fdREbyg9x8AV5bXeLLd5Vw7JdwqwRlhQoYnCxNCvEuM7vRaS4xxCCmYb0d0U01tPNnn17QeHfKR9eNpCRzBou54zAGAQ3BUEmM3mOWHzdv5Yd5+JPsbx1er/48v2kOGIySi5uU8w7eo9/Oj9m++oPfPgFAKfGhRUmx3rUyI8GRi4jLfBUYxIGPc9mMpBNNRRCQ1F2bbvOL+87zq4RZf+jA8fIxr/Zh7fnt/zN/ZqIPTjm9Rv7pdAL8fElHx3+pfRz0P63ocNVDUJWtrJZf7A4w7mr6nCV4YJhbiXWCkhGy9R9KMnhwRY4uA86Rbs34tc7MDgmCJ1hPwF8cwJf7j/gEu+wVeKq7cdtuBj/kJ81VHsKrjhcbwoLh+2+0iDOfEGpdfQC1kDHgUXhkCFLFS27NXJlbiycPEQrxLjCaujbpgRs9bUUA7DpmOIi7Nd3lgcY6Lc7NcugRfuABffgmOWrPmfzZ/75ZZXYDaS5b8NL/+PPUcTyPuNIQg8PgXGO9YB5Y3Ld4rlG5UtI2ZWIknFRML8QCwd7qa9Z5ASZJQc9/sFLNpTGktD853eGq1z9W1AWlLMTd7jSvXCmwIm+twtd+4WAOa39PAQ2kz/a2VQtqGy5ebMR9LL2CdH3Kv4rvrd/Ivg/eiMQRi94U59BFLfpq330USYX94Xi0e58vVH9NlyNP+DL9sv/hIWwX3g0XxaX8fLxPP3nK7ITFXX2CCZxY4Px/w2WdnmI0jvJioZ59kTAjxgDHqggG2WwGDQGHxLKQtOkHEQjtlrV/x8CXH/QsWrz2BVAyKjCQK2OwXZP0+YdxCSA9eMjOTkOc15+Y3ub5R8+RTjbLK88WvuDfzF9XDvFP9v/zX6kMoPBLHFT/PT9iv5D/YNx2oms55Vnhv+G4uiiUiKpTwlF7zD/Qv86v2jXy3+QbqYzwNf9y8jR8IfuqmccTMh/yU+XL8C3SmFkM4tzDPmamU0jlmoggVyInLfEIxIcRDwOhE390eqPHWkwSaNAo41655qesyKCuMdSxlGcNei7QjaZ2NaIWKjbykqA0eTyA1WVXTbkUsr1whiOAmA/5ui8f9Bb7HfAPfa97JFDkV+lAkxWbp8b7o+5ihjx6zRiPR1EN+hfojOiLjm+vv5LiGZr3fvZE324/xZeo/PYcUMx/yEfdSftp+xQt+/3NzUFc1a/0K42EhSXZlmSfEeLJwIIQohPhS4H8HFPDT3vt37fl7BPwb4HU04jBv994/dRD7PskYneijIm8rG9mxJNJ004iqstStmKysiUJNMi8RQtEKFEpJVoYFtbW0gxCLZWlYgPVcutBCM+TaZejdxfo8kh6tAzjS/fGt+n10Ge4iw3GkouJN8hFeKx7jz/xLD20dt4bgH5lv4UPuc/l2/T4eFtfwwDU/y/9hv5JfsH8Vi3rB735uUbDYnWFhJmI+SRFqd3hlonxzsnDXhCiEUMC/Bv5z4DLwJ0KI93vvPzG22d8H1r33LxFCvAP4QTiGorNjhNYSjMPiMaZpAxRKkGhNpBUemE4iSmvRUhIFikRraucIpNzOZA+KmjMLM1xfHR73Id0SAYavUb9DKG7dHRNT8Y36A3xrfVyECCB4n3sT76veRESFxJETcRBWq9aCmakQ77a+67H++MkogZOHg8gyvwH4jPf+Ce99BfzfwNv2bPM24Oe2Hv8S8FYhxIvuLNBaIjxktaGs7XZwXesmK+0FRKqxRkZ90604IAwVSgiUlrR0wLmZNlNpwLljPp5bYZ7NO+oHVsLzSvHU4S/oDlESkhNzEGQYAYPcs5nn1MaT1+Y5fcsTMjxZOAhCvACMp+kub7227zbeewNswhH0ZZ1AhKGiHQXbWoz11mTAVhxsK6HsRVnbpgDcOqaSkAemOzxwYZGXvxROULv0LljkHU0RBDD3aPXXDNCKNPNJm06isTSjcSdiDicXJyqpIoT4JuCbAC5evLcmy41jXDhi3GUan9s7/jsKGgsxLjVBIhnU8Nln56hdzbNXl3hscHexxMPAMl02aRGzccvtKq/4ffe5R7Sqo0MIfMHnwAMXznL/XIuFNN1XUm6Ck4WDuDVfAe4fe37f1mv7biOE0ECXfZT3vffv8d6/3nv/+oWF06WQ/EKxn3jtzV7TgSSUjXBtpxVyttvlwYckn3V4soUvEJ6HxVX+o30dhb91PaNF8l77ZUe0rqPD583CSy7M0wkTvBNkxjxHRWmCk4eDsBD/BPgsIcSDNMT3DuDv7Nnm/cDXAR8Gvhr4oPcvtPb/xQmtJanSlFjiSFNlDi0V903PwIVVhISP3NoYOxJ8ifwo/0T/PGfFOgZJiMH5Rnx2LzIf8ePmK3nSn+Ro6POHBC6eh4cW5llot+gmIZHeGYk7sRBPLu6aEL33RgjxHcBv0JTdvNd7/3EhxD8HPuK9fz/wM8DPCyE+QzPy+B13u98XE5xrel+z2mBwdKOQ2ThCqyaDGcUhhb/G9Aa3cVAPF39D/iHvDt6z7yQ97yEnwCEBQUHID5m38+/tYcyNOV58fhvOzswilURvxYUVW/FiO3GbTzIOJIbovf814Nf2vPZPxh4XwN86iH292DCqVRO+uZAir0gijTEOY0BYRZqGSAPnmsoeBsewzoiKHwx++qZjRYUA5xX/rP5arrDAH7uXb5HjvYUHgEuX4KFzc8zGCbNpTFsHqEBuVxVMyPDk4kQlVSZ4LrYVdfAkod5V7N1paYwIuDjToXrJfZydXud6NuSPPvHCep3vBl8u//i2OWUPbHK6Bs8/H7y+DS95SPG5D13kFefmmIojIq1QW6rqk/jhycfkGzoFGCnojC6o0RyOVhgQa81iq80XvfQ8X/jKh5mOAy514cEjXuNL5WXaorjlNjEVD4urR7Sio0MIvHoKXvnymJddusjiVAspFe0gIA2DSTLlFGFiIZ4SjJfhCMN258p0ElLWhryWeDkgiju88iUbrAwsfBqePKLU1cDH1F4+R0FnHAZFdgg903eDKaB/F/+/CLzqfnjwQsrrHn6QC7MtIhEQaYlScqKOfcowIcQTir3ZyNHzkbyYEoI41CReUwcBvarkkprFPOzJ6zlurA+I9VWmHodnipG7enj4Tff5fAfvI+Dm6rcC+G372kNcxfPDNJDywgjxPNAGLj0Er3/ZOb7woQtYI5hJYqajaNeogEm/8unBhBBPIPY2/Y8/H0FKgZZbLnThODPVYpBX9KemuLw65MJCh26SMJtc5cEyZ30VVq/BZ3xDTLd2bp8/HvP38efuYV4rH9tWsxlH4QN+z72aK5yM+lJF0yo1pUGaZmSoplG4hiYGmwCOncz9BeD+WTizAEHQJLnmWtN89uIirTBktSqJpCIMFLV1WO/R3HqGyqQM52RhQognEKNEynjd2jgZBmpH7GFElpHzpFHAfdMtWoEid4YlURI8dB/B5RVm9ZD5uYrZK/CptebClzQ1UAeFb67/O/5d+P08wPXteKLzkBHzSX+Rf1h/2wHu7e5ggYpGQS2h+TzOLYCKwAu4VDaivCoCVcOGhXPTkkCGLM61UUTMdWMuzXc4P9VGCUE3gSTQ2wLB43O998NE7ebkYUKIJxAjtxjTWBkjMizrZtBRFCgkO+UbgZLktSGvDMY7kJIpGdGeDyhMwmZWoQaKxDjaqoeVhiIDKaEzgGu8YGnFXejR4quqf8F/Jj/G31W/xRmxxlU/z8/Zv84fule8YJHVw0AALLTgzH2wdB1CCYvz0Io1gQwR2lNWMN2JODc9i5WOqShmI8uQPuD8XMxDs9PMJjFxoCmspRtH29Yh8vYX17jazcRSPBmYEOIJxPiFIsculNEQq/ELR0pBEmqGZQ0C5pOEyljW8oK13FBVlrMzKZ00ojY1m0nMzEzO41fXWd+Ajodg2FhMS9x9DaND8jvuNfyOe81dvtPhYgroDaHbby6Cc+dgcaZDHCREoSAINL28INUJaRRwYXaKuTTkRr+F9YYzrXbzudeGNApIZXMpFcYSa3Vb63CEvSGRCSkeLyaEeEJxswvDer+LJEfbSrETU1RKkoYB1nn6CBZ0yqovWCkN1nnOzc1Sl45QbDI7DUUF5RC6K9Dz8IxvZrrci4i2fl4xDdE0XDgbsLpWc2Z6mul2mwuLKTfWCyKpeehMi6k4JFKaSEmsg0QpOu2YbhQhvaAWTQmUF41lH0pJGD4/QdmJLuLJwYQQTzD2JlP2xhLHrcVWHBAZ1WQ3vaAdBAyrGik9kVCkUUBc1BSxZiaJyGY6DEuLko7rKxk3NmEgIJWwaJ6rznEvoEPjKjugb2BWQl14ppOQ+fk2bRUjrEKjacWKC5023SRkNa8oa0ftDK1IksqAROnms3YSoQTSg2OHGOH5aR0eFBnerDrhZs9v9tqLFRNCPMEYJ8BxYqyt254HPfo9ymQa43Ci+V/rPFpIahzdMKJzJuCpZUlRWZyH6ZkIUQv6cUE65UgMzM+Cvg6b2fG0AB4WApoC6ovT0N+AqQ7oCCIVIEOBFpqGxwTnZmPKCq5tZkSBJpEKFUhCKehsdZ94AcY1Md7QK8JQod3Ozeo4XOCbVSeMEnTQxKHHe6kn7vpuTAjxhGPvwCrndshv5DqbwuCEZyMrcTRJmMpbhoXFKwtGUmG5r5UyyGs+tbxKPyvBCuJ2QCuRtNqOtSVYXoOVrCGPmIMvzzkuaJpjUh6EhpaCuek27VZMVXriIODlZ2YQNC12vbygMmCtp5MGzMZxU2g95hI71wi+jpPLqCPlOAhmr+s9qlYYiUoESu4Spx2vYLjTtd7KmrwXLM0JIZ4SjKy/kTU4eq2qLP2qpuU0wVYM0eERTjDfDgmUAjyreUHhLOt5QT40TLUDytJSZpai9oS6qa2r6h0SvHmJ9elDCLQlzM+AFTDTAYlmWFa4ymEqRxoqaudJtSKeaqOEpzCOflkzEzcVirVzhOxYWEqI7VbKrDa0CY5VwGGve7w3uTN6XFW2cfn3yXLvdfnHmwL2WpN38rfThJNTBzHBLTHeoTJ+koWhYips5rFIKQikRApBJBWdJCLWiso5lFesDHKWezlKwVzaYipJkEFjHU3FIDX0hzvTRG4/EeX0wAFDB488BesbTZlREIKqFb28oF9lfPzqOk9c6zE0NaWxWC8Aj7CNZRhISWnsthxbXhoyYzDWbX/2sNNrfuDHsOc9b7UP5zzDvN4eaDZeqWCMo1dUCL9zUy1rS1XZ7cd52cx/GT0fvc/4+TciwW1Lc8941cP6HA4TEwvxlOBWro3WkroyVMZuT+3rRCG5MeS1oZ/XtBPN6rAplE6SgGFpKKsabyUKTytJuW8xoyphRoB1EA1hyMkbT/B8kdK02XUUFBbaESxMpcxMdRFzDq5J0iTEWE9FTW08U7GgHWr6lScIHbkxaL/bfkgiTeTUNuFs/xyCZWSMawrwgx13fe9zrSVZVhPHjTzcRllSGUu3FSGlIC8b1e7SWPLakGqNc56NvCTQEms9SGjrAESzz0FVb90gG6oYr3LYz0Uf4bRmzieEeIqw38lVFKYJ8NvmgqmdJxnNgfbNHOiZNEJLwZnpBKXmqa1luZ9TGYsKLGmrxY3+JkUJPoD5NlxbadyHWw8RPflo08RC2xLOn4dWDISgRch6lnEhnOLc2S4zSQhWUjlYyXICIemEzRTEdqC3LEZPJwyBraTJmIrNuHt4kCQwskZH1tYobjnuqpa1pV9UxFpxuTfkTCuhm0YoBIO6RhaCQEg2ypJIKaaikFgpNqoSHPSrmlkVEWjJsKypZUOywjc/UoidY92yFAfDinYr3Nc9Pm1W4TgmhHiKUVWWzbKipTVxqGlFwfbJ6AWUlQEpUHhWsprS1IRasplX1Fimk5jz8y0evbxE5CVZYGkHUFmIQojy051UkTSxwxng7DyEEcxOa4qhpxCGJIPrZsj9F9ostNvMtgLWshxTK3plTRJpQi1xXtAva1pRMzlvRIYj7FcedRDxM2PcdtImUBIZNO5tZSyhVtvZYu88g9pQOoOxntJaqtrSiUKGVc1mUZLXzU3Q43nJXJfSWUwN02nQ1E4q1ah6e8egqhpRYiGpnSHWTXx6JFSRFTWXNzPu85443JkeObJWxwl7b0b7pFuME0I85Yi3htyP4jd5aaidw1lHaT2RBK017dBRlILNvMRi0U7jlSMrK7KhpfaWbiIoSs9gDfpVI3hwGuOIIU3NYUUzzWxuBlpToCqoa0nhKs7rlPZMSF15qAK8t2wWnmEmuDgfMpskaCmpnCPVmkg13SeBlIRbF/54EiFA7sR5R6VQz9NlHBGGMW77/YFt8jXGsZzl4JtOm0DJxiuwjkDAaq8kDCSZqVldK9FCkJsagcQ6x7CqyHOHkBs4JyhKQ71i0VZzdj6mE4b0S0MTRfa0Qs1GXuN9Rd6y3C/bZHVNojRz7RDrPcvDnHYYIBHbIrhKCJQSuxI6ZqwN9SST4oQQTymMcWS1IRSSyu/QVhQofOkxSpKEklAoNvMSj8DhMNKxkCRkgeHp1T79vGStv05ewKCAKm+IxBWwcnyHd1eYpiFyTVN/qDRkAygtTM8Z5me6TE1H4DTdWNGOFaXxBFowO9U8Xh6WTMUaLRtXMQwVVWUprEU7uSuJMLLKR0kvreXziiOO/r+2DmEgqw2BlHjnCbfaNbPaoBG0dUDtLCvDktjUxFKxXpas9HJ6Zc2F6RZZYXmm3yPyipVBQZoo8rqmpSMyV/HkSondSpRUxqIDx/VhQmUNC60WZ2cSysrhZch6kdMJY9aynKlQc61XEIeCNNDoQJIGzc0iN4a6cvjcUzqLFpLpNNr+3LxgO4mz99hPEkFOCPEUYL+TZpTV1Eqit+66Zd24U7V1aCFQQm5lTD1CWpxw9Ps1tvJsFCX9smR9fY21DXACOimsW1hda2yEB4BnOBjhh6PEaHxCl2aWSwUEJUQptKKU2W4LoSS+hHZX000i4kDRDkNWs5JhVXFxusV8KwEaosu32h7VngLnbXd5jxjs8yHD0f8rIUBAGmiq2rKSF4Rl874Oz3ptKCtDoDWZLRn0BKWzPLG8jkLRiQOWh0OeXR1w5cY6USQpyhohodevkdIQSYUJJP1+QTcNsEi8hcCt4kKNqQyZK9ncLLDeIHxI2pYsxG3ysgYpWR96nBcsdEPmk4SiMk27qNb0XMWwMCSxIq+2MtXOEUoJaufmcVJLdSaEeMKxX/fBdoZPyW1rApo7ML7poGCriDiKIgJV089qpJMkLUU3CihqC87Rbk8xN58zLMAMYdhvrCtB4zKfNjIcYdSZMj0P3Rh8CpfOBKStFkop6swjI8NsNIOUksp60lCRhi1qZ2nHTfJkZO0550mCxlocTxq80MLm8e9xJB85LOvtgWJImI5CautYHhaEWrI+KNgoapKweVxbx9PXl3lieZ2FbkiiIi5v9lm9Ckt9mJ+GwRBmuyAsbFZQlpZUw9UBTIc1rbBJnDkP3cTQW7hOdAOuLkOrA4sdje7HrATr4BVT3RZREHBxZopeLrixniOU4NJMm7TTBgFKChKtyWuDlIJQSuJY77KER90ze0t19nbSHDUmhHjCMd6+t5cctZa0ZUBVWTbyhroEMB1H2/Eb5zyu8OTaMiU165lGKYnUkJuaUGrOzczw5NV1lgroZ018ap3T27oXApcEDDzUBZgQdAihbFPWFWe6bYg90mq6bU0kNOtFRa80tEOFcbDUy0mimqkwoBUFuy7Q8VZJuPMkyuiCH+lZBkiMcRTGImuLdZ7aWbLS0CsNC2lEFCqq2jCoHNd6Q5b6Q850Up68sspm1Wd1rWRlGS5fqYh0RZbB02Wjjv6Zla0YcL7/eq5U7K6+H4LaipMo4NINsA8YjBiQesg9tFd7zE13cKJGojF1Q4BaNaSqpSQ3hrbVODxZWROHGm12biajYvZR98zEZZ7geWPcrRp3N4SHzJhGWMB6BrVFCsFMGG8X1vaLmvWspHJNJnIjb1zrYlhRyYLpzhSznYBBv2bZN8IOhzlu4LCRAJ02LASQppAkMNNO6MwGaBdj8MReMzcdUZWeTVsSKoF3jtWhQ0qPlNAbeqx3TaG7VhTWku5j1cDte5f3tswFW+RQW4dGUG1PrBa0Qk0SagSwMsi5McjJiporq6usDQqKYsinbqyxvNR03OQ1XB42N4LxUREvJCFmx34/Bjz2VPP8Ak0Ioj0Lw6rHles9wik4Ox3TSTt87MmM4eIiUUuQyBDnQQkw3tMNmzk6I/ERJcR2gfjeusbjnlk9IcRTgHErcfwEGmU2k0CjhKA0lto7PE19Yq+q6Fc1gRBI5cmHjmFd0svAYnHasb425Nr6gCtXm2JsR3NhnWYMgKt9OJeCbsFMLOm2A5zREHg6cYCtIIkCKudJQkHgNVGoSKSgpXcswkg2Y0TxkIZ61/S8m8UP92JvnLAwlhgYVo2LPJ1E5LmhdJYb/RxnYa4d8MRqjxsbBQZDVRsev7rCRh8ezeHKWnOcH9s4Gqm2K1s/cg3cGswCZ4H6swpasmBYgvE5Z6bOcWFREshGLDcra1qRAg9reUESaLyH1GmEajLT4zhua3FCiKcEe0UeoMk0e8H2XbW0lm4UNS6Jd2RlTb+oaIcBWiqmWpalAaxsDihNjTaSjcxT5JCXsDgDVwawepwHegBQWz9oaGuItKJXW/AZuj3F2rAkDQNCoUB5Uh0SaEEoFIFqavIcHi0lQojG8jaGrmxuFbviuHcQPxyJLEgpCEO1XVozKGsC1bjNVng8nkQrbmQ5T62vs7ye4URNbizPXFnlTx5tvN/1w/4Ab4GR1bm29bP5GCy2YHkIK2tDPu+zL+PEWarakQYBm8MS4zzdOMALiXOOJAgojSWRGqnEvjHy48KEEE8Zxpvzt9WZA8lgWJFXhkBLagdZVTOo66Ym0XuGhaGfG3JjiNqSakNgRE1tmuLrsoSV5aMfcH8YSICublr0ZqY1SIHPDW4mpLIlRU+hpiSFq5kOEpQQJEpTW09hLXgIAtWUvmy5eF0dEobqOXHcO1F+Gf3P3jhkGmoSpcmtoZdV9KsKYx1XepusredkpuD66garfXjyWTiJE62vAEvDpiPoeg8+/UzBjcFTPHhmjjSNiEWICgX9IqCbBFzLPdPtpuB90aV029F2Oc5JqFWcEOIJx80EPb1gW6q+KAzXhzkCmNWNXl9W1eAliW6C3qU3XNno0RvkWO8wVcnmMEcDUxKGEnp23yWcOmgaAdi5AJwzREGLqTQg1glJGHLmbMyF7hTKS6aTgF5R06tqWqEmEIpAK1LduMfGuCZ2GDaXyigrfKsL9mYag6N6vMo0NYClsxSVYaOo2SwKesOKZzbWefLKGrUrMZU9zrD7AAAgAElEQVTnLx6FDLh+yJ/Z3aCmsVqHQHIDNoeg3SpxK+bCbBu7ahFK8fBih/PdFjNJzHpeMTQ1UaHIjCE1Oy70xEKcYF/c7MIajx/W1qG1ZCYOEUAcarxt3D2LpagcReUYDCsCFdBqGSrneHJlhUc+CcY1bti9opC9CMwoiALQAvoFpNIRdAOmWxFJHNDWEXNJzPKgpLCWzbJmJg4JhCSNgqa+U0t6RUWkFKHc6VkeZYWBm44K2FsZ4FzTU145h/RNDWNmajayEiEE63mOsbA6zFnv52RFQZbDI8+cbCLci4omEaMGUH8aZuYKNI5O29OKNMvrEakKSMKAmSSksJbSWYZlkxSMnNouRN8rY3ZUJDkhxBOM/WJUewfWe+tBC2q3Vb4hBMZ7lGoKt63yhEqCFORVzlI/Q1vDMIN1tzOP+F7BKk3vsvBNZ4pdh7lZy9L1HtlUxcJsl+W1Ah0ATtEykukkZDaJcFvWmwwEGEekmpjiaCzAqNQpduqmowLGL96ybnqKLR6FQABCNW10vbzmyvqQYVWyullS+4KiqPn0M5ssLcNacbrIcBwW+ISHCyuQxhWBynA+JooyHrvR9Fuf2eqGmY4izkwl2zec8TDEnWbwDxL30rVwT2LvxTY+PsDbLVFSGTDfTihKg/WeQVkiPAwyy6AuSSNFZQ1OCERt6JmC1bWm6Pq0S3vthaPpSBEFPH0dFlLIehW1A1EKulVJnlUsbyTb7utU1AyRcg7SSENlEErQDoPtuOFeDcr9Ltbx70drua1QrZxnYGryyqIlbBYVV/p9Lq9u4iSsZ5s88+yAEvjYswc7K/s4cQW42IPlOEcHOYmGSics5ZqpRIOXTVWEA1f5XQnCO83gHzTuihCFELPAL9J0eT0F/G3v/fqebT4P+AmafnsLfL/3/hfvZr8vVoxbjNJ5nPC4yjcZu7AZerSa5WwMarz0RCGsFobV1Zz1vKC30aNfZzx93XJl83TXGt4MHrjch3Ma2gGEbYgEeAWhENQ11M5TOsNiu4XzFuM11zdz2qmm5TUoCMROIfGt3Le9F6sSzc3KVbb5f+9xvrEQrXWsZCX9fs3V9SFSSbTylHXJ0kaz+P4RflZHgY/34HwO3TZUxTqLizl5WSC8YGEqJStDauexOBKtmXIhLRkcm57i3VqI3wX8tvf+XUKI79p6/j/u2SYDvtZ7/5gQ4jzwp0KI3/Deb9zlvl+UGO+OkFLQicNtrbxBUeGtoNvWXN/IWR5mXF3t07TIOpZ6fZZWPPWwsQ5Pr2rdrbEGLDqYaoEzcHWtKc5uxTAzk9CpEuaTlCRQGKdYbEeUZksKSyuyypDEzaUxbvGNW4AjJZq9gq2BkjjTWO4putGp9E0B/WwaoZQgUtCrYgpT88SzSyyt16QxrKzee+Nfe0Cvhs9aB6EgKwpUWOC8o/OSi+TWMCwsUSDpBLvFMo4juXK3hPg24Eu2Hv8c8LvsIUTv/afHHl8VQiwBC8CEEA8AWjcKyP2y4nq/QCqHdpIbvSG1gSTW1MaRFxVZ7nnmRkOE9/rsiIGDxTbMdgAJwsHGIGd5tUeSxBTUrK+WTXdEKJhLUrphoyztrEeo5mL01mMVu4rhx+Nc47/H/xbIJkNdO4e1js2qRvqmXfLTNzYxxtGvcj51ZcDaOvj89MYM7wSPAf0VOJvCQ5cAJ9kcVLTjilhrQtUkVJQQDMsaLSVJpE+dhXjGe39t6/F14MytNhZCvIGmEeLxu9zvPYHneyccn48xemyM256hEgWCwsCNzSF55ZiZUtR9xZWVdQZFzlTc9Do/y06L1r2Ky0B6DSIJKoBOVyCNpy4sps4o2i2klkQhVCVsiIJYNx0VOmg6SkYSa20ZPIcA9z4efZfbyS7nKV0jrxUphXOWy5sZeWl4dmmTZEqytLzB6g3YtE344l5zl/eihmY0QQWFr1gthiR9zXwnJgk0WVVTyaa+trMlrmGM29UddNi4LSEKIX6LpktnL75n/In33gshbuqFCSHOAT8PfJ33ft82SyHENwHfBHDx4sXbLe1UY9ToD9xR/+ZoMFAgmiBzYS3WOPyW9SOVQIpGAsw7AcKxNvRsDguCwOONIBs2luG9ToYjPAXEKxBE4LynOyWQsUQLiQzA1Y6NDU/rTE3qUmpvCaRCbJ2dtXVUziL3dKiMzzcZuXhlbTHW0YoDvPU4AaGUbDgHAorKYYwj1IL+sM9m5vj0EyUrFm4c2yd0tFgFVoew/jhcGgwInaQdRLTTgKiuyEuJCgTzSbx1E/EMypo2wZGR4m0J0Xv/1272NyHEDSHEOe/9tS3C27fRQQjRAT4AfI/3/o9usa/3AO8BeP3rX3+vhrgAthvZR4/vZPuRzJf1Ho3AKYGpt8Q3ayhrw+owp3aW6SRiaZBxZWUV6QVrvZqVJbh2m/3cS6iAQQl1CcMBnF/wJPGQdtRieTXnoQvTdBJ4eG6aojJIJMY5au/RZU0SaEKpds0yGalUmzHJfCmbguLSe4xxCCWIpaKqLUv9grk0YGhqnIfrvT79YYXSlsK/eMhwHGtAugbXZnrcf98cvUFFP68JpGQ6iSBhOwY7Gl0AR1OPeLcu8/uBrwPetfX7fXs3EEKEwK8A/8Z7/0t3ub97Cs/ny5VS0IoDjHGNzhwCjcAoQb+oGOQ1n17a5MbaJirUnJlOqeoahMS6glBANnzxWIcjPAHMAS1ApFAUlrMzAcPaEElNlDYk2C8cU5GgE8VsFiW1dyRAOwqeU3M4Koofx0iKbbsfVzWWpEJgLOAEgQaBYqodsNazrBxhU3JCwdvUH/D31G+xIDYofcDvuVfzXvtlPOHPH91CaG5UxjZNAb1BiYk9D81NY5zHSU8gJWqr/lMhdlnh44O9RjhIorxbQnwX8O+FEH8feBr42wBCiNcD3+K9/4at194MzAkhvn7r/77ee//nd7nvFwVGMRTn/LarNizrxkX2Ausc1nrCQHJuNqZyhiyrWB/krK/2efZaQekhMI27fFoFX+8GITDVhouLAb7WxHFEVwdo5bm6kjcxqyhiUDVdPFltiY1CS0k7DHbGAuyTTIHdOocj1fJQK5z3LHQiqtoRaMGTa0OGdUEQaDxNLPco8Eb5cX4q+GEEnpbYOgMEvF38Ln9TfYj32zfy3eYbsOzfeXPQ6ALSNbHEq8srxHGbxW5CrCIiNIWzzEYBQDOyYSte7pyn3pKXGJ92eJCF23dFiN77VeCt+7z+EeAbth7/W+Df3s1+XqwwxpFVhtgp+mWFkpJQyGbSmQe1NXwo0oqVPGeYOdpBQNyVOCNYizeJAlh6lkZG/piP57hwA4h6sHSjpjVlGA5KytgwyNoYbakrT6urEL4Z1zkXN1MMAym3hUzHk1lay33jvlIKfNWQo/CQW9tI9ivHel6wspJzdeMGwz4MskaE4ibarQeG14pP8zPBu0lF9Zy/BcISYPlK9WE0lv/efNshr6bBEs3NeViBQeGrnGHfQbvGywBnmpt/mgbb3UHQzMEeJa1uNhv6bnGvV1+cKuznhqVhcxL0y2bIUJoGxFKRm+aiAyiMRdNs24kjhJesDwcMC4NnSxzAvbjih+NwNBfho0/ByoZnMOxjM+jVOaEUZHXN2rDCYtkoKpz32/3M4xjdoEYZ/nGMBE8z0ygKWTyBEAgpmg4VoejOBAx7cGMNnlg+fDIEz/8S/OS+ZDiOVFR8mfpPvEocXfHHDaDOQdYFVoRs1Dm1sQxzz8BUrOYFWVbv+g5G5Li3GP4g44oTQjwhGB9GPv6a1s2F2Y0C0qSZuxyGCiFoJp2ZpkG+GWYB63nBoKrolxWDPKcuGiHRgnu3EPt2EDQnekZTqN03DpU6isqwntXEWhFrTV071rKS6/2ctbwgrwxRoEiiHUfqZiKxIwWiThyykCbkpWFoDKUxON+oYbfjEJE0VQFHUWLzavE4Z8SdBSpDar5RfeCQV7SDFIgSOLd4hnZLEWpFrAPun02YiWOEgMI1qkCjsawjHGZiZdLLfEKw1/Tf2xUR6h3JdSUESgo+s7JJIgPSWNGJAkIhWR8W5KZEeU/gm77eDo3gwRPHeoTHB09jjcVAYWBjvaSdlGQ9x9RUyOL9c8wlTQtZJw5JowAtdw+dL2tLaSyd5Ll64iOLRY4lXkKrqGvLUl5zbXPIxqBmKo14cLHNs1cGRxK+eIv6KDG3tg5H0MLzJerPm4lTRwAFXL0GT3evMz83S1YY1IxAKcmgMnTigHbYxBFHpTe30p88KEwI8QRhP4mv0UkwIkhjHU40sa6ydNigZLgp6MV1MymvyMlyw/pgg2ubsL7aZPVOuwr23ULSDM8abkKrBYvTLYQWSKsZ1jWhDHA4zrZSukm083mP3YRGA+NH2L5pjWn4jZ53opBKWm4MM0rjmnk2VrCeZ2wMjiZ+2CFD3bw0+DmIjooNaW5SQkGNoHIV3iQoJHXtqZwFv1N7OLoqjkL1ZuIyn1CMlxJsB4+VJNJbvbO+sWYWp1LmOjHdKGCtzFnpZwzLAU4JfA2ubm76L7Zym72oaWKJg6rJcJa1AStRUrLaK8iqCms9uTVUlW0EGvzOTch63/Qlj4U1RvWHo9ekFI3sWG3J62amTV5YjHNIJVjtDalyz7mFRg3lsLHsZ6j8nWeOB8SHuJrd6APKQaQ9woKTUJoaRxMPz00Tq3XOY7c+75ElPqoLPQxMCPGYsPcL3Rs7HL/wtl22LbdtUFQsZwVCeaaCAARc7Q15+kaP3mBIUdXUpaO0QNi4Jy92QoRG0TmNYSaFjd6Afq8gSj1Z5riyOeAzyxtsZBW9qsIaRxJqkkjTipvSGyHFrqmHsNuqH1mTznukEHjnkVoyn6Y8ND9FJ0nwpaeTNtMApw75eD/gvmBrlt/tUXnNr9g3HfKKdtAC4jZsrEMtBTNTIYPM8dhyn6yusA7KLSHeSKtdnlJeGsraHgopTgjxGLAf4e21PPZm0qKgESs1zqGUpB1oFloJznuWegVrWUmgJJ0oxEpFDGQD8PXxDiU6KUiAhRDun4PlDB59asigGLC+VjPwBQjPRr+i8jWFMWyWFcOy3q7/9ALSQO+aqzKyCqMtlWfrG2XsSKvt4uJuFODwSB9QuppNYH0ZbmRNousw8Yw/w8fcQxh/+8vcIfhZ+18c8op2ENEkVsIuzEQR9013OTMT0UkVnTiiGwW04sZt3ivysN/1cVCYEOIxYO8XOv58r+Uxsg6da3QPS2MJpURIQaI1NY6iqFEC2mnIA/efZU6HDCOwBrL6xVmMvRc5cLmCXg79NdgswDjDRtbHG89CJ2GmHdIOIkKp6EYhEkFeGQZVTVGaXarOe2d/bAv2GsNSLyM3Bi231LjbEYWvMA7aMczMwrkW3HcEx/2d9bfTJ8X4m5NH5kN+0LydZ/0ttVkOFIsCuotwfq7DzFSHwjTjLnqbDucclXPPuRZG5U5RoA6tt3lCiMeE/Yp6xy2Pve7AKJ6S14bSNPVykVZEQiFCKAtLb1jjvCcXnmK1CUafxEltx4U+UFdNf3NbQlU5Ll/bpD/I6WUllYF+UW0LZWgtSUJNLBVC7dystl3jse8oUJI41s3Q+ZHbDKzlzeyUtfWKqqjo6ojFBc2580dRhwhXmecrq+/nUX8/mQ93EePAx/R9zP9kvo7/0375EaymwTyNPqXS0E0TPM1nudCJuf9swlyaNNMixz7fvTWghxVDnGSZjwn79V+ODycqa7vdDaGEoLCWQEpaYTMEKRCKrK7xAhbSlERLWIcb6z0GgwLrIG3B2c2mp/J44XmteIz7xRIFIX/kPodN2seykk8OmtaxxRgqY3AKZABKaM7MwFwrQXoweMIt8hBKkAq93UI5yjrvlbp3zhMEinki1JbFP+8cGvB4ZNTBO1gZ9NlYHWzPjz7s+O5lv8BXVO/iFeIp/pb6He4TK2Q+5oPuNfya+wIqgkNewW6sAYtVE84RKiCJAirbWIih1NTe7RrsNarHTdG7hHoPI+M8IcRjwK2+0PG734g0R9PdtJZY70GAFI7/v703jbFsu+77fmsPZ7pjjT2+foP4SIqSaIl6ka0PhCWLAhgj0AAnjizJoJLYDMLYMWDoAwPGCBAnAR3FmaAgMSMFomIYZmI4FB3LAcknywKUUEMiiZYohk98nPq9nqu6hjucYe+dD+ee6lvF6q56rO5bVd3nBxTqDqfuXXXvPf+799pr/9fN3SmpUURGGG1C7ipEwMRw7waMtx80Fj8t3q9+i79l/z4DRgAEBEvF/+n+Ff5W9W+zQ7bQeNZmv3UFSiteWh2QJjFF4Um6Efd2J2wZzfNDjRPBla7euTLbMaTUg6bzzfX5nireB7Sut/YVhaMKgUo84hSptcQdQzqxDIaGK3cq7k4Wt+D1R+EF/qj6txb0bA/nu3pwaRleuDrkUr+L1kIULFrX9bU7k3qbajFrw9D0ap5PWTyp8pt2ynwKHJUUbu53Mzup+Zq4ZmFlN6/YHE+4s5tDELIuTPOK7e0RkbEkAkrBnQX/b/P8Jf0q/7X9H7gi9+jKlK5M6cmEREr+Vf3b/Er0H9FlvNCY3gS0gO3DpZUlhsspbiokkbCWJXgBHzxG1f1QtNTvUbOyWRSO0vl9K50He6xA/WW2W5ZsjguCh6VeTGYMPtd0+gmDpQ5rF+E7OvWCz7PCC8Dz63BxLaXf7YKDREVcXk3oxhZBCAoiqyi9Z1JU37Sy/yRpBfGUOOrbzRi117CoqjyjouT+JGdcVUhgtldW088MTjxVAfdGI75yd5fNrZJpDhP/5FcyH8Yam/zH5pdJH7KPNpaKK3KXnzX/60Lj0kAZYHQPiqpgZ6PCRuA93BlNGE9KjChyX5c5jYo6L9ukLoLUopfGZp/BQ1MO0vRaUaouzl5OI1ayhJU0ZpjFdDqaNIqwpbBdQKd/uPvy08oO8MYtcNS7r5Z6KRf6MYM4oSgDK1nMWpqS2Xqbaunr1/Ngfv3gNtfHRSuIZ5hGFI2pc4dda8mMwYVAXjgc9agxlEIvs1xc6nFpKWUwVHXCOj692H9Kv3rk3ulYKv4N/S+Ij7m97HEwpi5D2hhR1xVqwcaa2ztTbm2M2ShyNscFk6JCCYyrCgJ778NBK7D5BbBmBTS2ui7OrqraOVsrrNUMk5h+EjMeVxTBsZzB5TXoPgOJqwHwnRa+90X4zrdZrq4sUZaBqqqYVoHMGK4MMxJrmM7qDzuJpZ9Ee693M1J8kmU3z8BbcbZ5WJvL5iTLS0caG6xWjMuKUAVGZUU/jkE5Si84cWyNcoLXdFNLnjscBVunWG/zQ/r/JZWje8g5FO+Sr/F74eUFRAWWepQYCYSiIlmxBKe4upYySFK0UiS2rucsQm3wapVityiJvcfo/WI43wZivqUAgFGKRGuK2SgnsoqL3Q47k4Ik1QwGGVXuuH/tLl99/enuqfKOJRguwUpi6PS6iNbkuaMkMMpLSu9ZShJ28gJUXct50ETjoO3Xk6AVxFPk4OLKQUMHLULuHLaqE8pRpcidw2ihm9QtNF1ecGt3yvaooPI5G5MpeV6gwkP6OSwIe8ylgmaRZVGk1KOVKsD9wpHmExywMS7QYumkGh+EMvi6f000E0CphTGamybPt4Forje/G4ecuNLcn+QkWjOuKrqp4fnlHhu7U25Wwt3JJheWLO9eKtnZgS9XzJafnh6eB164Csu9PlFkGfa7rKcdxt2Si90UH2RWh1ixOS642E2/qc7wSS6kzNMK4ikyX2Yzf/3BamV9EuZl3WY0BJhWFaNphVeeygWmpeONzV12JlO0CmzcKxh2QUdQnuKZ9QX/PG+TNzDy6HXumJKvhEsLigqWgWEKFy/Aai8CZzEdiJSmcCX3N3JUALkoXOl1CQKl9xiRvdak8+wrvWF/sf3eVHqWC06NwVlP1fHExrDcTSgoiPSAfrrF69e3Ubdgc3IWSqUeD+8ycOl5uLi6zKCTQVA8Pxyw0o24vV0wLjzr/YSVNMFohTWCmTmPHzThfdJiCK0gngoHp8kHT6bSeXyopwhW1aPCcVHRiyyV99zYGtNPLFGsSGOFVRrnKr765l2+cROmPfjG5sKcnA7lf3bv5/36tzGPyA/6AJ/z384dhguJSYCVZRhomBSwuV1gVUW3s86oKlFKGHYsRhQXOtneKOX+JN+zYDvMZf+w0cv8dDozZm/6PakcvmqMTi1xiHFlibYxna7iqvYsjWHzxvl2ODfA24F3v1PjvMPljl1KOklMJ9X0koRBVpsZD9IIUULpPcM4rnuNl6ez+74VxAUzP5qA/SdTY09vZ3VszUkV6wd7YyUINqoXTW7fz7k3GVGEioDHVxAncHvj9Jue/2F4iX/h/xQ/oP7goSvNE2L+8+qnFhaTpX5ttoGsD4nkPP9Cn2EnohfFhAAWTRrVhcKjccVSEtOPo73VzialcdiU7uD1vem0BTMzOU2toRsZNsclkYXEaEwcsbqUUrmKKnd87fY2Q+ovNMP5EkZL7Tv5UgLPX4P1Cz0iH5FmKZcGKSu9rP6ymTWidz4QK42ZlZlpI080R3gU7SrzgmlWyIB9BgHN1qTptKqLr6m3K+WV2zu5JMCoqAg+4L2grGPz/pTrN+9y/eYGG7vw5ha8dtrV2DP+g/Kv82n3vUyD3WdDtRsSNkKXv1z8h3wpPLeweArqVeY0heUMltYM+WjC/d2CMjhCCOTOI8ozKiuc9+TO7XV/K7wnuLBXCnUUzUk9yev31BjFSpYQW0MSKwZJzMuXl7jYT+jYhGHcY7CUsDSMec/b4b3X4N2XWKAp18noA88BL3fh6iUoStjd9cRZzEvrfa4s97na77LezeilEWbWY3xcVXs582Zn4XF6lT8J2hHiKdC80QdzTonRdQN0UbVAlhWldxSlYjcvWUpiOokmtR028glUAlGFiRTb49rMYUnDfXe60+WGEsPfqP4619wtflK/ystynUmI+T/89/NZ/x6qU/j4FcBkAm4ZiqKiEMX90S4XBhndLOZiL6ETR4hAx9g9y69gBRMgih44lyt/dPvLJo/YfAkaowgV9G1EZDVr3ZjtqSW1sNyNuH53DF4Tlh03Nu4j9wu+uw9vbtd7n0+z0P5RfHcKqytgY+im8PzKBbqDmOdW+kRiudBP8KF2xC693xsFNrW2p5EvPIxWEE+Rg+0CwqwQVYo6ke+C58bWhOWu4/b2hFFe8ubmGKcqdkeOL918k63dgt3xlHt3Ia/gujt77jZfDxf4aPWTpx0GlrqVQjeFVDFb2MhY6veItUGrwDBNKJxjUnpCqKe4Vs/qD+0DUTuuGDaF2vDATTszBhUJG6MpVRBWO5bUWpbShMoJsVFsTHLK0tNPS8pLBe/M4c6tCa/fhS9Oz0Z/nHVgxdY7ovo9eP5KRpZ06HUiLg47vGu93iipDHS0rfeEa4OepYWgdgmyoRbH5vVptuq1I8RnlGZ/rNNgnDCuKnJXd8mdlp7N0YSv3R1xdSVlHHLKCXzt/l3G45K8mvLmTbg5ap1tjqJpNJVNYVxAXzmWhwMuDzMSqyidsF3kuKouptYi+BDYzgtSU58q8/tpj3y+Oa9EYxRUfl9vlmEa46mdce6Mp/St5aWlHnciy1pZstpN2RhNyMtA4ccoHRNl93mpqlei8034f05hK1KXenfN6gVYG8JaP8ZhuLSyzNvWh+SFxxqL0bBbOvohQhtFojQ2qlM/xtSzIAnsTZPne9O0I8RnHGMUvnDYSGOcQhUgIlxbSqkIpNGYnTxHO8Od4j7X37zHH38xkHbhC9sseEfw+SQHhsDSECSC1BtGeck37u6wlvWQKGcpqSsoO0lCoC6ZaXJdpfMPTfgf5l7U0EyvD7bUTBLDqkopnWcYh9l2TMX2tGQQR1itudBPZ/t5l/g8N0njmCQtmYwgrybwhxPSFO7crRfSth7zazakNnMtqRfYVxNYGdbCsb6mWR/2ePcLl+uFQhPRiSLW+oaAJyAor1jOYiKr9zwj0UJROMZlhVXqmwraT0sMoRXEU2X+JNpzXPYwKkre3JpQuIrlbowV4epyl9dvbnN9tMmtGxvceDNw3dcN2FsxPD4VMOjVLTAvXlqml6Uk2nB5NaEoBRR0jCExhqrydGK79x65h5SCNDnFh7kXzd8+v+0P6pwkBSgr3B/n7JQF48rRTyzDNCGvSgJCXjhevrjK9XiHnk4Y9aZs7kSsrE/oZ7C2Diu34Oa92f9oYbesc6a3qdMFj/qcrFIL3ga1CK5r6A6hY+rKhZEDlcM7XuoTp4q7WxOGqaWbdhnnjrVBxoVugkeItSI1FqOE5UyRzIrUy7L+QjGz9MP86/AkLb3eCq0gnhJ7JTUHDAIqV28Pe3G5S+Ect3ZH/MnmhClTvrpxn9dv3Oa1L8Et//hHA087F6lt670CbSF4hQmK1BgGaQJpQIsmMxorinvFlE5hybLaL/Dge9WMaub9EQ/jMJFsaBbPurFlmMUURW2X34kjIu0ojMboAmctiOdCt4P3jjsjSyyWt1+d4r2QRIYXLzq+cnOD3W1Iszq3N5rA23LIHYQCrIVBCrd3ILUQRTDK4aWXYqabOa/fBBXBi5eFfhxzf1KSpYrVHKpIceXSMlYMaTziYn/AUtcSG0s866usRahCIBAoAySi9vKozes3/+Uw7yf5pPYnvxVaQTwlGlsvgOm0Ioo0WoSdqqJwjswY7u7mfOnGNtfvb3J7c4fpeMS9Ddjy9Td5y1vjYgbdGPpdIYsigveMypKlbsK4KLnQycgrRzVbsrBoyvCgNOpho5mTjGqUqncjNX8vWljtpLUztFZ0tSY2mnFVsj2uCOLoJzEoYb2bkESaL9+6h9GG1W6HXr9LMa2oKkcoPTuhYimx3LqzjRdHHKd0U8XSRsFwKcJNPcpolnodiqEj62yQxpZvu3KRtWHKV+9sEWtLEgviDS9f7LE1rnj3cyv0o7qH9agosVK3tRgmMaWvG3R5H/Z60DT/66H//ymPCtMoX+cAAB/MSURBVOdpBXEBHMwvNaMCjTCelNwd5/QSg1GK7bxga1QyrUqMEtJUMyTm9sYWr9+AL95/uk0AnhQChAA+hjRWrC8v8c7LK5SVEGvY3C7ppxVGK7rGkqUWo9W+VWJ48F42JrFwspzX/L7neSoCkVJEkSbkFV2JMN16IaLygWkeWO5a3nFhSGRq0YyNYmNkcd3AaFrQjyNGuQMJKBUTRYpJnlPmmm97octAd7i5s4MS6MYJpqNY63dYSTs8t5IxLhzlIDBII5Y6CUZBaiyKnPUsJYvrEWFZeezMyNUYRaTeWgnNWRFDaAXxiTNv2NAk1Y1RZN7sTbd6iSHSdUsAV0E/1dy6PUaUx2hha7tkJ59w+xTEsDFeKM/xR2WVeoU5S2GYAaUC5+jGEVMcm5OCOPLo0EWkdm1Wqn6/tvOC1Nf/+9702Mux6xCPohk9NdPG+Wll83lpdrxUU89WWdKNDS8sd4itQQLoWQlLVQWM1hSuQgfFlaWM2Bh2ioILg4yy8pSVY2M8Zb3bJU7qqXa/Y1lOY7QRdNB0EoMSIbb1LqnLg86sDCzQtZblLNk38kOBQoj0/nahxylLOktiCK0gPnH2SmrmTqCmg17pPFoJgzRmPC1xVQDlSa0BcdzdLhhPx/zh6zf5xtfg6wuLOvCj6jf5a+aTvCQ3AHgtXOW/q36cX/V/mnq8dX7ws5/CAyXcGZcMK09ReoxVxKWmby3dJKrNeKuKaFqf3KX3e21IoS4NOW4d4pFxPSJ/Nt9PxIWA1YpBFpOauq9IU7ZSOs8gjsmdAwO9xNaX/QQXYBBHXO51GBUl9yY596c5670OK52Y1Bq+Irv0Ek0nstzeLugkHhWE29tT1nsJvUFElli2xjnTqiI1pt7TDXttVw0Ko+uGXAfNLuDwEeBZWUQ5yIkEUUSWgU9QO4N/FfiLIYRD2wCLSB/4AvDJEMJfO8nznjcOnkDeB4xWaGoHlWlecXM0wXvP1qTg1uaUaeGppOCNjU0qB/erRRXjBv4z84v8mP5NOvKgxPud8g3+S/v3eI97jf+0+ssLieRx0QNW+3B1FaIYdGy5uNSnwNNXMcOOEBlDWbm9fcxB6hO5a+1eT5t5HnUSH3fkc5z82bwjUlOq07ghNffFnXjfbd4HenFE5T2ZtVitCFL7My4lEYX3ZLGdTYMVlQ9YozBKkUWWsnKUwYOCSNe9YbbzgmnpSW2FcYpY6b1i9aGKv2lk2MT8qN5BZ00M4eR7mT8MvBpCeBl4dXb9Yfxt4DdO+HznloPlNVoEbevi39LVBapF5Wuj0bg2yNydTBmPC/LdxXnk/YD6g28Sw4ZMcn5S/xp/Wv54QdGcHAv0E3juMqSDelV5rdvn0nIXme0K6cURsRI2JiX3xhOcq0c+StVWVPDg/TvKuv6t2tsfVxDm7fPz0jGaloym5b6WBS7Uz21MPZpc6abEs/o/oN4q2M9Yy2ojXO8Dw17CsBMTa80wS9AIkTW8tNxjpVP/fRAYpjHrvWRPYIG9VqxNKdH8/94I5FG9g84aJxXEHwU+Prv8ceDHDjtIRL4XuAB8+oTPd+5pPiTNqjLU/VFWsrjuNFZWfGNjxO3tEbtbE1QcuLe1uFXlf1f/k0PFsCEh54PmnywompPRpe5oV+azEpQdz9h7loddhklE7hw704JIKVa6KeudmG4UwcwD0ft6F8n8Kun8CX6Y6B0lAgc5+BhHPebeZZmZ1s7d3rh2N3/T5CFjWy+6NG7fSWLoxnZfoXhjXOEFIqXod+I9IVVK6CX1wkoamz0BPPh/Puy288RJc4gXQgg3ZpdvUovePkREAX8X+GngfY96MBH5IPBBgGvXrp0wtLPJ/LSmdJ6idEyriuUkIQTPG1tj7m5NqGTCjY0R97dgfLQT/2PjXerR1qRK4LvUVxYUzcnoUu+yiDqQxppIB9I4YZBafFCMi5JEaxyBaVXRy7I9QWkcbUrvUaXbE5jjFBK/FTE8zDH9qMdsBOng7UrJXl5xXiih3h5n1dw0Vqt9j9f0PG4s6IBvKig/yMPKaM4zRwqiiHyWwxuDfWT+SgghiMhh84QPAb8aQrgu8ugXK4TwMeBjAK+88spZ2L/+WGk+rM1JZ7ViWlTs5hWJLkkiTc9GjLsF4zzgNQS/2CWM46wml+F8rMXF1C0vrwxheThAOSGKLNuTihtmG1cE4iVFL7KMC8f2NOdC3MEYxXRaIVroKrtPgBoeRw7s4GO8lcd81EJFNTdtbVatD/PfnGe+AmL+OQ72MnnaOfKTHUJ46KhORG6JyKUQwg0RucThbTy+H3iviHyI+ks7EpHdEMKj8o1PHQfbKDYrh7HWGBE2pgUKGGSW0qdMq5yl2FJ1Svy9xcX5Wfce/oL+DexDrP/zYPhn/vsWF9C3yJD6iyRWUFUw2slZXe4z7KaUBWTWEveFpSjFKIU2jq28IpsWdCJL4T2J0ocuqDQ8DoH4VkeXD3us+Wnzwcc77qru/KLQo0T6LJbNnJSTftV/CvgA8NHZ7185eEAIYc8SWUR+BnjlWRND2O98opSAh6JwiBauDrvs5gXb0xKrNLd2dtkZO0pfsr3A/CHAx9y/xo/o/wv7EOt/h+aX3PsXGNG3xjowWIalDiQdRWQUSRQxiBPKqGIlS1ntJFitmTrHIIqJM003i/bl3+ankOeBRy1gHFcMD+sPc/AYOL7AnidO+k5/FPhhEXmNOj/4UQAReUVEfuGkwZ1HjlpdLJ1nkleMpiWb05xpUeF94PZoyq3dCW9u77K1NaHKp1SAN7UT8aJ4PVzm3y//BuMQMwl27/ZxiBiFmL9a/k2uh7UFRvTW6QErF2BlCdAgGpIsoawqMJ5iCvfGORvjonYgD6F2xdb1ymtV+b183LiojuWOfR44dinQIxaF5j0ez8Le48fNiUaIIYR7wA8dcvvvAn/lkNt/CfilkzznWeaoYtNmlNgcawuFaMFVnn5S139NIsvKoEupKvJJybQ3ZmcELND37p/77+G9+X/DX9K/xg/q3ycE4bP+PfxD94Pcp7e4QL4FLgIrnfrHSL2YspQOSCPD7qQkNYZLlxJWsoRJ6XAEEmXIjCG2mp1JUXfIs4Y0NmSROVcjxMfBceoinzYhbDgf2fFzwnELbRvhdCEgVWCnKAkEfBBWuwmRFt7YHCOxAgvXLkB4A764wL4A9xjw8+7H+Xn344t70hNiqC2slruQZNDvdFhbGjDsRgxtyhuMSExtSJBFltgYRGrPw8J7yCumzpEYvd/YtWUfT6sYQttk6rHzqKnG/DESoAz1lrDEajJjGaSW1GqC10QRJLY+YbMUsvPSaeiUULOfa8vw4prGB7iwPCCNLVv3K0oCL10YsJxF5IVnVFQoAa0UgXoBRhtFz1oGWQzAbl4+NdPlluPRjhAXwGH1ZkGgG9m9XNV2XjCpKghCGUq8U6wOhiRRRAiOSX6P9d3Dl/GfdSLq8oUMWO5B3I0Yb1WUVY6RumymDI6qirBK0esYdquK6diz2qmt/Pf2mDO3LU6144VnjVYQF8DDptJKyV5T+kRr+nFECJ6pi9FoBpnlxg5cf/M+g0xzNXPcbu2x93EB6AsMhxBZiDsgOmJ9WaNDTDc1XFrO6JmE2CiM1iTGkFhDCIHSByZlRWTqnUONN2GT732WavBaWkFcGIdtcWryU6OyrMs8lLCde1xZ7wgZ5w6DotdJ0JHnzu423/EG3KxggaWJZw5F7V4jwMUIXngOOl3NlZVlok6EKwLTwiFaoVEYHyEKYmsJBFDUDdKNxgKd2O6N2uf7eyglKPbvTmmF8emmFcRToCnMZpafcgQIdc7QqLopz25RML5ZQRSzciWhqpYYjUsuDHLMa557k1P+J04RD7xILYxJr+4hYqIYZQy+ENZ6KV4Uq1lMSaDf0XRtjNVC8LPGUVqhqM1ZG2MELbJna5/P+qfMVwU8jXV3LftpBfEUUEqQqhZCqxXdqB6h7BYlkdEoqfOKwyxmNy+QoIiSwPOX1tnY2UTsNs9N4AZnoyH9ojDUFmgvCLx4CdDQSUHFkIkiji3OQxJFrPVjpmVgMq3wDkrtGecOazU9iYi13rP4AmpfP/tge9u8SULzuxXDp59WEE+BZnq253YTaleVWGvSuO725gXWeilrnZTN8ZSdoqAXRYT+kHe8bYwbV1zfgK/droXxWeEqcPkCoCDtwpWVAUVekXQyBknCUjfCYojEMAkll3oZlwYdgg/c84FYq7r/h667vwGMpmWdK1QPXKqfRuOClqNpBfEUmB9teB/2TcsaN+SBiwgxBB8QDTIWjFKku5bkxef48tdvYrcmLAFdBbef4i58EbPFE1P3U7am7h63liaI1ax2elxb7zJMUoILTCtPFCmez7r0oggC7DpHx2p6cbT3ZbS3NU8rYnkghifZrtfmGc83rSCeEvvsnuYMN9Vs61gRPOIhMpqVJKGqAoPUEltLNzcM3paytHSDz3c3YQs6I/jSCCYsyln7yXKZujn6DrAGPLcGF5fqXsOdGK5dXCJNUzo2IdKKpTQj04YJDh0CVhn6cURiDGXwpGgSrckSSz6z85q3ypoXw3FR7dlhvRXaPOP5pxXEU+RgXqqxaHIhoBGUFvzMpNPh6aiIK33DG1vQiQ1JfIX7OwVF39PbntDZhOkE7o7qBuXndSptgOUYLvYhpDCdwvoQhssZq06I+xGp6jBIEq6uZDgnpNYQGUVkNd1gSLTizijH6JzVLCUzholzqLxCH1g4UXa/12Di9T4xfJwtAVrONq0gnjHmLZyqyjMpq9pRO0lqn76iogwOV3rGE8d3XrlKkgl3NnM2d3e4Nx6xfXvCvSlwAzZZ6DboE/Nt1NNhZaE0dS+UkIJKFb5w+NgQVTEknm5HUxXCpKjIYo2rDOuDmKqq7fKdBBJtSKP6Y65E6vae8sDsdd4oFR7kdw8a+Z7Ep7Dl/NAK4ilysDvZwd0sLoQ6b6gVKhFG05KKwHIWM8kdkVV1Fzal0IwYpglLrsNNu8N6PiXrjRnvgKtg9x78oa/3+i7QgHsfHWpx7gBj6txgAnzHKrx5F3oW1i7A889l7O6OyZ2wmnXIujFKFNZGWKVZ6cWEoLjc6aFEiGJFZiMgsJKkbE1zQoBMW/pJBMDWtGCQRBjY8zhscrfzr/tJTFtbzj+tIJ4ih02Z50/Eg6UfncRilaIfR9zTU6alJjMGY4XnRdguc4bTmIyYjcmIvPSMTE5QgXwJ0tm+v2kFm7u1IL1BnXd8Egi1L6Ginr5n1KvE/SWYTMAGWF6FSytC2gl0Iogzy/rSgEtrK0ynUyaTwGRSsNwd8tKFLt0kZjKpfSR7aUQnNqggVN4zrTyFc0ycY6AjOrElSeqP+ICo3sI31wDqsNd9/vaHXW95emkF8ZQ57onYjCZFC3HQrHVSNHWOMa8cxKBFsZLCOy8MubU74YtpSrdj+dqb97l9fxurR2SRBe24dccTp/D8NkwLyAsYTSFUtSGtp65xzKmFcwsYzH7H1CM7y4NdI53Z5fHsdxfQFoYJxCn8qQxcgDSpbbm2c5AcdAJOW77tYszLL63z+jc2GO1WBFUS64jLlyIGNmO5a8FZIhMoFAw6Bu9hZ1oRGUGLop9aummEzLbgNVNfeGCN30yRD44KW1qgFcRzw7zjdl66va5rW9OC4AOd2BIbTQi1acQ9M2Ep6ZDFwtsur3FhucvmuCCJNcEJa8NNtncrVq8leIE372yjVIl4xf1xSVXBeAS5A6Mhi2FzB6oC1tdhuSNMCdy8OSuDiaCfwvYIdsagI6hG9d7irAO9nsY4wWmPJWLQARMLsc3oJRHGGPpRgijDoJ8gQVHi6JISiaZrE8ZUJBJBVhKJIYk0/chShUDwgczWZhlpZBiXFVLVAlg+pMdIK4QtB2kF8RwxfwI3rUyXYK8/S146Cu/YmE7Jc2FtuV6ZyPoVL6302RhPccrhCuHtlwZ84+4unSiiMgXrvQFlcEzykot5yfZ4REATWyGNE4wVxnmBUoHUZCgDrvRcWRoTW2HqFFKVrC2D0Y7x2BGlGkIg1jFQ11PGKqEzsHjnyScQJ5p+GrE1qhiXFUu9jMtLXYrCkcWWyCqMaCKj6MUplQtYiQhhVqOpBItQyoN+NU0XuabYOlYPWje0ItjyKFpBPKc0TcKTxOzrcRFJXXzcj+oC5DujMWUREUeKbhWxNS3QNoAXvv3yMte3drhz09Nfhpd6K3RSRVF6bmyNGZcFgzRhXFRM84rIRHRsTBkqhlnCuChY6We4XHBRyWQCWaS4POhwY3vM7rRgVJQYB057QqFYW0sZTT2UhkvLhov9Lt0kYmsyxRrNSiejH0Xc3Jmw0onIrEWUIEHQWtBKMYgjIlPnV4PU2+5UVY+amxpDqxVG7V+gUhzdQrTl2aYVxHOGUrUhQXN5/ndsNaWrd1l0TcQkrxgkMbl1dG1ENrCsdGIK57gzyomV4TsurnKhO8JKhEjAKkUaC5PU0UsiBnGM73rujaZk0wgtoFVEPzNQCatLEaGC3Hl8L9CPIpDAavBc7HQZhxythFubY3alwihDGuC5KxndxKLR5K5klDuiPDDsR1zopbXIK9ialix3I1zwFKWQWYXWdX5wPh9otNrX48OFAH5u4US3K8ctR9MK4jnkYSdy0z94XgSkEHpRveLa7M4wRjFIYhyBonKsdbp4PDIbQWXGEBREoujFEXnliK1GAlTOs1s6OpHGA1GwVKZiZ7dkfZBgtLCTVwSvWBlYik3H12/vMClLrqxmvGN1menQs96NyauAMTDarFjJYvqppfLCVl6SJZaO1YzKikEUo7SwMymxRu+JW1460tjUZUu6Fsay9PUXhmfPUahxsnnUAlZLC7SCeK45bAfFwZM+tpp01iipqjzTyhH5QJZaJnmFiRTOeUQJRenqvdRK0XUWFwJT77Ba0bMRqTUoEXaLgknpudyvj6mc5r4tGBcVhfK1Hb8SEhPxwrrhwnLC/d2C5SxlrZeymxdsTRzKeAYmRZkpsdX0kpjMGErvmVQVDoiVJokMEmBqHYmueyVXlaf0HjsTvNhqLIqS2lLNGPXA2HV2jDpQbtPScpBWEM8pR+XBmvvV3MjIGEVUKQrvMV7trVqX3hNmJT2prT8SWWypvIcAaWSIZiMzqK8XpePuaIJWmjQWVjspo7KkCp5LnQ6dxBApzdhVjCaOC/0O/cTSMZZp5RhmoFGIElbSZM+yPzIaHVTdLL5ylMFjlcKFQKI0MssJGqPIfC30brYFrxkhH6QRR3g6ewm3PD5aQTynHJUHO6ywGyBJDKpwe+0LrFF0ld3nEp2X9RQ5RpPPRo2NwI7ycmauClMXWI011miGHUdWGialI000gzgmSy1ua0QVAhLAKo0PgVQbunHd83m3KImsonSBSVURgEBABeF+nuM9qE7t9HPQjcaFgOGb+wOXzqN9bfp6sNawFcOWR9EK4jnmqBP74P3NanSY3XxwoWH+OGUfCOR0WlEET6I1ndiipRabpcySRpbdokCL4nI/pfKezWnBzdGE9RBwAS50E7pJRKx0/ThGI1rQIgxNDMR7U2AJsJUXiEBqDV1r6WbRniDX9l6OZBbn3gryXFmN9rJ/yvwWXrOWZ5tWEJ8R5q3G5oWwahYd/AMb/eZ4NxvZ5aEWqiZ3p5TgSkc3igg+UFWBxGq0USTaIFLvoEkiw9Q7xCtCqKeuZeHRViHhgWM4MJv6BtLE1CNQJeSVw+g699nsP3YqYGaP1dQZHux70jaGavlWaQXxGaGZYjeXm9HifC8R5cP+AmYPJtGY6kE9325RYkXt7fgonaebWFJr9nJ4vSyiKBxRpOlWliJ4IqmnvFHQe8/XkJeurnOc5TRF1z1P5heCGjfreaE7OFWe/z9bMWz5VmgF8RljPr+mRb5JVJpdL83l+akosNeruHHiiVW92OJmvo3eB6bTilFVd3vRVpE4QXT99810283ylEpJPQ32jjjofQsgSglRpA+19n/USLAVw5ZvlVYQnyH2jZ6aUhTk8PupFyAa4Wnycp3E7ju++d2I2CSvKIOnYwxJUveHMUk91YY6f9mIajPqFC17ecUmL1g6vyeYB52rm1GsVK34tTxeWkF8xpgvwXnU6Gp+St3k+x6Vl2vELY0N8awsZr7daiO+87tLmsezWhHbeO+x5i26DrLn+lOxbyrd0vI4ONEnSUSWReQzIvLa7PfSQ467JiKfFpE/FpEviMgLJ3nelsfDw8StER14YCJxWL7uYX+zb4vc7O8aIdwzYdX79xnP3xdbvdcvuXns+ZibmLLorfc9aWl5FCf9NH0YeDWE8DLw6uz6Yfwy8HMhhG8Hvg+4fcLnbXmCHBSw+d9H/U0jjPMi1lw/zJx1XhznH2teDA8+3vwot6XlcXLST9SPAh+fXf448GMHDxCRdwEmhPAZgBDCbghhfMLnbVkAj5q6Nszfv5dvnNsds+c8Y9RDR5mPGqkeJpgtLU+KkwrihRBC09ztJnX73IO8HbgvIv9YRH5PRH5ORPQJn7flCXMcIZofvc2L4cGR23FHmQ977FYMWxbFkYsqIvJZ4OIhd31k/koIIYjIYcMJA7wX+B7g68AngJ8BfvGQ5/og8EGAa9euHRVayxPmWNPkuVXpZiV63qj1JM+tfWvo2rJYjhTEEML7HnafiNwSkUshhBsiconDc4PXgd8PIbw++5tPAn+GQwQxhPAx4GMAr7zyytPQb/2p52BdIJUnLx2l93Sx37IotjtOWk6Dk06ZPwV8YHb5A8CvHHLM7wBDEVmbXf9zwBdO+LwtZ4z5XGEa1+YNJx0hHid3eFSOs6XlrXBSQfwo8MMi8hrwvtl1ROQVEfkFgBCCA34WeFVE/iV1d8r/6YTP23IGmc8VPo4V4OOI4XEWflpajsuJCrNDCPeAHzrk9t8F/src9c8A7z7Jc7WcLmdxcaPdt9zyuGkLuVqO5CyPxFoxbHmctIL4jHMckWtrAVueFVpBfIZ5KyO/VgxbngVac4dnmDYH19Kyn3aE+IzTimFLywNaQWxpaWmZ0QpiS0tLy4xWEFtaWlpmtILY0tLSMqMVxJZzzVksFm85v7SC2HJuOcs7aFrOJ20dYsu5pa2jbHnctCPElnNNK4Ytj5NWEFtaWlpmtILY0tLSMqMVxJaWlpYZrSC2tLS0zGgFsaWlpWVGK4gtLS0tM1pBbGlpaZnRCmJLS0vLjFYQW1paWma0gtjS0tIyQ0I4mxvjReQO8LW5m1aBu6cUznE56zG28Z2MNr6TcVbiez6EsHbYHWdWEA8iIr8bQnjltON4FGc9xja+k9HGdzLOenzQTplbWlpa9mgFsaWlpWXGeRLEj512AMfgrMfYxncy2vhOxlmP7/zkEFtaWlqeNOdphNjS0tLyRDmzgigiyyLyGRF5bfZ76SHHXRORT4vIH4vIF0TkhbMW4+zYvohcF5GfP0vxich3i8j/LSJ/JCKfF5F/8wnH9H4R+f9E5E9E5MOH3B+LyCdm9//WIt/PY8b3N2efs8+LyKsi8vwi4ztOjHPH/QURCSKy0JXd48QnIn9x9jr+kYj8g0XG90hCCGfyB/gvgA/PLn8Y+DsPOe7XgR+eXe4C2VmLcXb/fwv8A+Dnz1J8wNuBl2eXLwM3gOETikcDXwZeAiLgD4B3HTjmQ8D/OLv8E8AnFvh6HSe+H2w+Y8C/t8j4jhvj7Lge8BvA54BXzlJ8wMvA7wFLs+vri3wNH/VzZkeIwI8CH59d/jjwYwcPEJF3ASaE8BmAEMJuCGG8uBCPjhFARL4XuAB8ekFxNRwZXwjhSyGE12aX3wRuA4cWrT4Gvg/4kxDC6yGEAviHsxgfFvM/An5IRBbVOOXI+EII/3zuM/Y54OqCYjt2jDP+NvB3gOkig+N48f1V4L8PIWwChBBuLzjGh3KWBfFCCOHG7PJNakE5yNuB+yLyj0Xk90Tk50RELy7Eo2MUEQX8XeBnFxhXw3Fewz1E5Puov9W//ITiuQJ8Y+769dlthx4TQqiALWDlCcVzkOPEN8+/A/yzJxrRN3NkjCLyHuC5EMI/XWRgM47zGr4deLuI/KaIfE5E3r+w6I7gVNuQishngYuH3PWR+SshhCAihy2HG+C9wPcAXwc+AfwM8ItnKMYPAb8aQrj+JAY6jyG+5nEuAf8L8IEQgn+8UT59iMhPA68Af/a0Y5ln9gX8X1GfB2cVQz1t/gHqEfZviMh3hRDun2pUnLIghhDe97D7ROSWiFwKIdyYnayHDauvA78fQnh99jefBP4Mj1EQH0OM3w+8V0Q+RJ3jjERkN4Tw0GT4guNDRPrAPwU+EkL43OOI6yG8ATw3d/3q7LbDjrkuIgYYAPeeYEyHPXfDYfEhIu+j/sL5syGEfEGxNRwVYw/4TuDXZ1/AF4FPiciPhBB+9wzEB/V5+1shhBL4ioh8iVogf2cB8T2Sszxl/hTwgdnlDwC/csgxvwMMRaTJef054AsLiK3hyBhDCD8VQrgWQniBetr8y49LDB9HfCISAf/7LK5/9ITj+R3gZRF5cfa8PzGLcZ75mP914NfCLPO+AI6MT0S+B/h7wI+cUu7rkTGGELZCCKshhBdmn7nPzWJdhBgeGd+MT1KPDhGRVeop9OsLiu/RnPaqzsN+qPNGrwKvAZ8Flme3vwL8wtxxPwx8HviXwC8B0VmLce74n2Gxq8xHxgf8NFACvz/3891PMKY/D3yJOk/5kdlt/wn1SQuQAP8b8CfAbwMvLfhzd1R8nwVuzb1Wn1pkfMeJ8cCxv84CV5mP+RoK9bT+C7Pz9icW/Ro+7KfdqdLS0tIy4yxPmVtaWloWSiuILS0tLTNaQWxpaWmZ0QpiS0tLy4xWEFtaWlpmtILY0tLSMqMVxJaWlpYZrSC2tLS0zPj/AVkX0jZ0VnhSAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUQAAAE/CAYAAAA+D7rEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eZxlWVXn+11nn+EOMeVYU1aRxfSEwqqyBmw/TTHZKuJrENEGKXxdrWKj8FE/tAq2PgQVLQQa8EE/rNfStiCgYkOjFk3xFIF+iFQVpMxQI5VzxnjHM+3h/bHPjbwZFREZWRlVGZF5vp9PfOLec/YZ7z2/u/daa68lzjlqampqaiA41ydQU1NTs1WoBbGmpqamohbEmpqamopaEGtqamoqakGsqampqagFsaampqaiFsSaM0JE+iLy+LPcx34RcSISPoJt/0FEfvZsjv9YICJvEJH3n+vzOFPW+3xF5BYR+V+P9Tk9ltSCuAmIyMtE5K7qy3RURD4uIs841+f1aOCcm3DO3X+uz6Pm4WzGj8WF/vnWgniWiMhrgHcAvwdcBFwB/Gfghef4vM6493UhcyHcrwvhGs+WWhDPAhGZBn4beJVz7r875wbOudI599fOuV+t2iQi8g4ROVL9vUNEkmrds0XkkIj8moicqHqXPyoizxeRb4vIgoj8x7HjvUFEPiwify4iPRH5oohcM7b+QRF5rYh8GRiISCgi/0JEPiciSyLyzyLy7LH2t4jI/dW+HhCRm6vlTxSRT4tIR0TmROTPx7Zx1frvFZFjIqLG1r2oOjYiEojI60TkPhGZF5G/EJGdq9zDnxCRu1cse42I/I8NfgY/LSLfEJFFEfmEiDxubN07ReSgiHRF5G4RuWmVe/l+EekCt1Q9rN8Rkf+vuid3iMjusW3Wu5dXVvesJyKfBJa3W+O8XygiB6pzu09EnlctnxaRP66+C4dF5HdH93g0ZBWRt1bX+4CI/HC17k3ATcC7qpHKu6rlTkReJSL3APdUy14hIvdW36+PicilY+flROSJ1etd1fquiHwBeMJYOxGRt1ff266IfEVEnraRz2xL45yr/x7hH/A8QAPhOm1+G/g8sBfYA3wO+J1q3bOr7V8PRMArgFngA8AkcBWQAldW7d8AlMCPV+1/BXgAiKr1DwIHgMuBJnAZMA88H//j9wPV+z1AG+gC/1u17SXAVdXrDwK/UW3TAJ4xdj0OeGL1+j7gB8bW/SXwuur1L1XXvQ9IgD8CPlit21/tJ6zWLQBPGdvPl4AXr3E//wH42er1C4F7gadU+/pN4HNjbV8O7KrW/QfgGNBYcS9/tLrOZrXv+4Anj72/tWq/5r2s1v8j8J+q63km0APev8Y1PB3oVPsIqn1/V7XuI9W9auO/M18A/n217pbqnF8BKODngSOArLw3Kz6vTwI7q2t6LjAHXFed6/8FfGaNz/dDwF9U5/I04DDwv6p1PwTcDcwAUn0Gl5zrZ/Ksn+lzfQLb+Q+4GTh2mjb3Ac8fe/9DwIPV62fjBU9V7yerL+T3jrW/G/jR6vUbgM+PrQuAo8BN1fsHgZ8eW/9a4H0rzucTwL+tvuRLwIuB5oo2fwrcBuxb5XrGH5jfBd47du4D4HHV+28A3z+23SXVwxwyJojVuv8beFP1+ipgEUjWuJ/LDz3wceBnVtyP4egcVtl2Ebhm7F5+ZpV9/+bY+18A/ucG7uUV+B+29ti6D7C2IP4R8PZVll8E5OOfB/CTwKeq17cA946ta1X38eKV92bF5/Xcsfd/DPzB2PuJ6nPZP/754gW3pBLqat3vcVIQnwt8G/gXQHCun8XN+quHzGfHPLBb1rfNXAp8Z+z9d6ply/twzpnqdVr9Pz62PsV/aUccHL1wzlng0Ir9HRx7/TjgJ6oh3pKILAHPwP+SD4CXAK8EjorI34rId1Xb/Rr+V/8LIvI1EfnpNa7tA8CPiTcB/BjwRefc6FofB3xk7LjfAAz+oV/JfwNeJiIC/BTwF865fI1jjvM44J1jx1iozvsyABH5lWo43anWT3PqUPbgw/boe5Ejhpy892veS/z9X6zu6Yjxz3wll+N/KFe7ngj/eYyO8Uf4nuLDzs85N6xejn8/VmP8Ok/5Pjrn+vjv8WUrttmD//Ea33Z8u78H3gW8GzghIreJyNRpzmPLUwvi2fGP+F/0H12nzRH8F33EFdWyR8rloxciEuCHpOP7G09fdBDfq5kZ+2s7524FcM59wjn3A/iH+pvA/1MtP+ace4Vz7lLg3wP/eWRXGsc593X8Q/LDwMvwAjl+7B9eceyGc+7wKvv5PFDgbWAvA963wXtxED+cHD9G0zn3ucpe+GvAvwF2OOdm8MNUWeNebeRYa93Lo8AOEWmPtb/iNPt6whrLc2D32DGmnHNXbfAc17qe8eWnfB+rc96FHw6PM4vv9V4+tuyUa3LO/aFz7nrgqXgzw69u8Dy3LLUgngXOuQ7e/vdu8c6QlohEIvLDIvIHVbMPAr8pInsqA/3rgbOJT7teRH6s6pX+Mv4B+vwabd8P/GsR+SERUSLSEO/I2SciF1WG/Xa1jz5gYdnRsa/axyL+gbJrHOMDeHvhM/E2xBHvAd40cnJU17+e5/1P8T2O0jm30Vi39wC/LiJXVceYFpGfqNZN4h/oWSAUkdcDZ9ODWfNeVr3iu4A3ikgsPuTqX6+zrz8G/p2IfL9459NlIvJdzrmjwB3A20Rkqlr3BBF51gbP8ThwuhjRD1bHvrbq2f8e8E/OuQfHG1Wjlv8OvKH6Xj8Vbx4AQERuFO9Yi/Cmkoy1vyPbhloQzxLn3NuA1+AN+rP4X/lXAx+tmvwu/mH5MvAV4IvVskfK/8APdRfxw8sfc86Va5zbQbzj4T+Onduv4j/3oDrvI/ih5rPwRnqAG4F/EpE+8DHgl9zasWkfrLb9e+fc3Njyd1bb3iEiPbxof+861/U+vOF+wz8WzrmPAG8GPiTeU/xVfG8VvH3vf+LtXN/BP7CrDZE3eqz17iX4nu334u/lb+EFfq19fQH4d8Db8b3WT3Oy1/Z/ADHwdfxn/GF8D34jvBP48coD/YdrHPv/Bf5P4K/wPdsnAC9dY3+vxg/HjwF/AvzXsXVT+BHFIv7+zgNv2eB5bllG3qmabYCIvAHv0Hj5uT6XzUZEmsAJ4Drn3D3n+nxqLkzqHmLNVuHngTtrMaw5l9SR6zXnHBF5EO/sWM85VVPzqFMPmWtqamoq6iFzTU1NTUUtiDU1NTUVW9aGuHv3brd///5zfRo1NTXnGXffffecc27Pauu2rCDu37+fu+6661yfRk1NzXmGiKw5rbIeMtfU1NRU1IJYU1NTU1ELYk1NTU3FlrUh1tRcqJRlyaFDh8iy7Fyfyram0Wiwb98+oija8Da1INbUbDEOHTrE5OQk+/fvx6eIrDlTnHPMz89z6NAhrrzyyg1vVw+Za2q2GFmWsWvXrloMzwIRYdeuXWfcy94UQRSR54nIt6rCNa9bo82/EZGvVxmYP7Bam5qaGk8thmfPI7mHZy2I4iuCvRufh+6pwE9WySTH2zwJ+HXgX1bZf3/5bI9bU1Pz6KGU4tprr+Wqq67immuu4W1vexvWrp//9cEHH+QDH9jefZ3N6CE+HV/45n7nXIGv1LUyM/IrgHc75xYBnHMnNuG4NTU1jxLNZpMDBw7wta99jU9+8pN8/OMf541vfOO629SC6LmMUzMRH+LhBWueDDxZfL3bz0tVg3YlIvJzInKXiNw1Ozu7CadWcz5gbZ2R6Vyyd+9ebrvtNt71rnfhnOPBBx/kpptu4rrrruO6667jc5/7HACve93r+OxnP8u1117L29/+9jXbbWUeKy9zCDwJX3ZzH/AZEflu59zSeCPn3G348pfccMMN9VNQg7WO0lgiAoKgtqudKx7/+MdjjOHEiRPs3buXT37ykzQaDe655x5+8id/krvuuotbb72Vt771rfzN3/wNAMPhcNV2W5nNEMTDnFqZax8Pr+B1CF/IpgQeEJFv4wXyzk04fs02wVp3xqIWBFKL4QZ5JPf3kVCWJa9+9as5cOAASim+/e1vn1W7rcRmCOKdwJNE5Eq8EL4UX3BnnI/iC27/16ry3JOBtYoW1ZyHnE1PrxbD0/No96Tvv/9+lFLs3buXN77xjVx00UX88z//M9ZaGo3Gqtu8/e1v31C7rcRZ2xCdcxpfnesT+GLkf+Gc+5qI/LaIvKBq9glgXkS+DnwK+FXn3PzZHrtm+xAEQqTqnt6jxaN5f2dnZ3nlK1/Jq1/9akSETqfDJZdcQhAEvO9978MYA8Dk5CS9Xm95u7XabWU2xYbonLsduH3FstePvXb4kpev2Yzj1WxPajF8dNnM+5umKddeey1lWRKGIT/1Uz/Fa17jH99f+IVf4MUvfjF/+qd/yvOe9zza7TYAV199NUoprrnmGm655ZY1221ltmxNlRtuuMFtdQNsTc2jwTe+8Q2e8pSnnOvTOC9Y7V6KyN3OuRtWa19P3au5oKhDeGrWoxbEmguGkeOhFsWataiz3dRcMNQhPDWno+4h1lxQ1GJYsx61INZsKerhbM25pBbEmjPmTEVro+1HNj6t18+qcrbnc16SLsLCA/5/zSOmFsQLmEciJGfqmDiT9kEgiAPj3Cnt19v2gneU3Pt38Mc/BG99MrznX/r/7/0hv/wsOHbsGC996Ut5whOewPXXX8/zn//8RzT17k/+5E84cuTIGW/3/Oc/n6WlpYctf8Mb3sBb3/rWM97fRqkF8QLlTIRkvM2ZzohYq/1qx7XW4QSUyHL7053n+P4vOFH8zFvgz2+Gg58HU0Ax8P8f+rxf/plHJhzOOV70ohfx7Gc/m/vuu4+7776b3//93+f48eNnvK/1BHG9mSu33347MzMzZ3y8s6UWxAuUjQrbaoI0LlYbPdbp9jl+TmEYPGzZeuc5EsMLqqd479/BZ98GZbr6+jKFz771EfUUP/WpTxFFEa985SuXl11zzTXcdNNNvOUtb+HGG2/k6quv5rd+67cAnwfxKU95Cq94xSu46qqr+MEf/EHSNOXDH/4wd911FzfffDPXXnstaZqyf/9+Xvva13Ldddfxl3/5l3zwgx/ku7/7u3na057Ga1/72uXj7d+/n7m5OQDe9KY38eQnP5lnPOMZfOtb31pu84d/+Ic89alP5eqrr+alL33pGV/natSCeAGzkV7eej28kQCdyfB2vX2udU5nc57nLZ/+g7XFcESZ+l7kGfLVr36V66+//mHL77jjDu655x6+8IUvcODAAe6++24+85nPAHDPPffwqle9iq997WvMzMzwV3/1V/z4j/84N9xwA3/2Z3/GgQMHaDabAOzatYsvfvGLPPOZz+S1r30tf//3f8+BAwe48847+ehHP3rKMe+++24+9KEPceDAAW6//XbuvPNkgqxbb72VL33pS3z5y1/mPe95zxlf52rUglhzWtYSqUj5r8+4MK4mkvDY2PouGDFMF+HIFzfW9vDdm+ZoueOOO7jjjjv4nu/5Hq677jq++c1vcs899wBw5ZVXcu211wJw/fXX8+CDD665n5e85CUA3HnnnTz72c9mz549hGHIzTffvCywIz772c/yohe9iFarxdTUFC94wQuW11199dXcfPPNvP/97ycMNyekuhbEmjNmvKc33jNbTSRHrLT1XVDD280mXQK1wVrDQeTbnwFXXXUVd99998OWO+f49V//dQ4cOMCBAwe49957+Zmf+RkAkiRZbqeUQmu95v43K8nD3/7t3/KqV72KL37xi9x4443rHnOj1IJYc0asZ1McvT7d8HXkTd6I/XKzOK/EtzkDptxYW1v69mfAc5/7XPI857bbblte9uUvf5mpqSne+9730u/3ATh8+DAnTqxfHmllSrBxnv70p/PpT3+aubk5jDF88IMf5FnPetYpbZ75zGfy0Y9+lDRN6fV6/PVf/7W/LGs5ePAgz3nOc3jzm99Mp9NZPq+zoZ66V3PGjPf01hO9ccYTmFrryLQhCOQUB8p4W4C8NCSRWnOfAFrbVfex1rHH9/FYZZjedJo74NLrvHf5dFx2vW9/BogIH/nIR/jlX/5l3vzmN9NoNNi/fz/veMc7mJmZ4fu+7/sAmJiY4P3vfz9KqTX3dcstt/DKV76SZrPJP/7jP56y7pJLLuHWW2/lOc95Ds45fuRHfoQXvvDU+nTXXXcdL3nJS7jmmmvYu3cvN954I+A91C9/+cvpdDo45/jFX/zFTfFK1+m/ajbMsrCMDYtX9gTXEpmVPcqRkI0Pv8eFMFLB8v5LY9HG0m5Ep+xba8uw0LTicEOiuPI8Vzv/9a7hsWJD6b/u/TsfWrOeYyVqwkv+DJ74/Zt7gtuIOv1Xzaaymh1w/PVKkclLQ1GYh+1jNANlNNweCWBemuVtxh0yQSAkkSIMg1WDtQHCMFhVDFcbHq8UuI14z7c0T/x+uOk/eNFbjagJN/3KBS2Gj4R6yFyzJiuHmiORWK92hzaW1FimquHwSNyUFQwOJb53aJwjiRRJpLDWYZxbDsge7Xd0TFFCKzgpfOM9uJViONr3Wuc3vu2a3vPtkhHnmb/qh86feYv3JgeRtxledr1fV4vhGVMLYs2ajIvD+BBzvGe1UmCacUhQmuVh8UicwjAgqHp/w1Kj5GQQdhAIwdh+kkidYqPcqCCvFNaV69bbduV1r7y2LcsTv9//pYvem9ycOWObYc1JakGsWZdxsVvNKVEai7InnSMjgVtpo7PWLdsNW1G4vH60bqU9cTS8HhfHkZNlvaDuaBUr0Fpivh7nuh60cw6RMzhuc0cthCt4JP6RWhBrNsRqvaXRUHgkbKNl4B0j1rrlIfEgK+kXJQ2lCFVAaS2RBCgRMm2IdYBxbtm2t9KeOHo9Es/x8xo/H+BhIv1IhsHncujcaDSYn59n165dZyaKNcs455ifnz/j0qe1INasy8qhJjw87hDjbXdOWA6rAdDOLrdpxiEKwYkfEjfHto+rpA7aWNpRdFLw1MkA79H/vDRobWk0QrS2XnidI1TBcm9yXKTXsxeejnM1XN63bx+HDh1idnb2nBz/fKHRaLBv374z2qYWxJo1WTnUBB7mZBn16Ea2O/AeYVfFGrarYXJpLAZHgJzaiyz9Ppxx9PKCSPy+R8Njax2Z0cTKD5VzbVgqS3bRWBbRlR7jkUivdU0bHTKfK0GMoogrr7zynBz7QqcOu6lZk5XT8uBkUPZ4CM0oNGbUTokggdAKw+W2SoRQnWyntV22ByoRemXB8U7G8cGQYVqSV6mhlAiFsYjD9y5Dtew0iVRAqAICkYcNnccDukeMn/N6bJvQm5pNp+4h1qzLuMd11FsceY9HPUKtLcNSE5ngFCdKMw5JC02/KJmII8TBYpZTGENuLe0wZGg0YkEFAY/b2aYVRRjc8vA8DAOmiYljRZprxOFtkMbSDEOaSUhRGDLtBTSOTwrhqJc5Op9xD/TpZtlsJGznkbItvNcXKLUg1qzKyod23IO7craKEmEiiZaFURyU1tJMQqIgYDr2gjbISgZVyI0AKZpeVoJAQwUkcUhaalwAjUCRFpq8NCjlRUxbi7GORqCWe4BaW0QJMYEfQmu73ANdycrkEqvZRMevd7V7crae53Ptva5Zn1oQa05ho8HXoyGskpMB16MAamsdgfWiNJ9miIOdQYPJVowSITeGblGiC81EHDLQmrQwhEGAC8CVjiAWlBNKZ8iLas6yCjDOMiy9PRLAWMdEEpE0QobDEquEIjM4gUY1x3bllMOR4+V017mSzfA8b6vA7wuQ2oZ4AbKWbWwkHMApTgqtLUVhSHPt/2tNNy/op8Up9sOR4Ay1pqiCs2PxITb9vKQoDBIIcahoBAGI90RnhaFvSrSzFNqQGYOtep6FtiiBodEMyhKjHZoqJMe55eDu4bBkoDXOOOJIEVSCPfJKr7ye0VRANRbWstG6L2dLLYZbl7qHeIGx2nS8lcHX4xSFoZsVy97cJFQoJ1hxdPKSZhqSaUMUBjSjkNJYSmMojCXIhUYUkoSKMPCeaG0sxlokEIy1FAYmkgjrHEXpcGK94GYlzVjR6Rfsnm6gEJpRSKIUaanJSk0UKppVQHfhvE2y0QjJMk1uLaHxYplpQys4aTs0zi0P61d6ytcbRtec/2yKIIrI84B3Agr4L865W9do92Lgw8CNzrk6lc1jxGqit5otbUReegfFKEBaiaCUohmHlJWYNQNFqfwwtigKiqonhkCuLcYYwkZCPysonEWsjz8clCX9zBAp7zFuhiHtOCK3Pp6w1EKiFINCU2hD7iyRCJFSlNbSKwq/LnfsnUloi0+UqvCB2IOsJBChqRQq8h7oOAiWZ8JY607xlAfRyZkywRlM76s5PzlrQRQRBbwb+AHgEHCniHzMOff1Fe0mgV8C/ulsj3mhcibeyfEZHisf8JXiOD5UHoXCjNYXxg99c2OYDAMCKygE4xxxrNDGgoNhrikjS64Nxzsp4nyva1BYnLP0y5KWikAc3SIjyxyBcuxoNkiiAmMdzTggyy1OWWIJiQPFTCIspgXWwd52AyUBu5oJRWJR+OH6SSH2mXOiMAAHoXHkzlJaS1D42EaDtzmCj5fE+v/jc6lrMbxw2Qwb4tOBe51z9zvnCuBDwAtXafc7wJuBbBOOecFxJrFx421XBi2vhqlscSPPrR/2ervhcBTqIgFFYejnJUt5jsURS0BhLZnWZNaQBAEBwo5mwmRbgQiIJdeaonQspinaWabjBo/f0+biqTbNxIuac95DvTDI6fRKEEcUBuydbNCOIgLxw/VYBQyqfIkIpIXmeH9IURrEwVQzJpKAflmSax9204p8ppzRPOrRfOuR/XHl/RkPNaq5sNgMQbwMODj2/lC1bBkRuQ643Dn3t5twvAuSjQjbWm3HM8WsLAA1CqQeiQSc7CVqY1GhoFRAQylECaEIw8xQGENmjR+OBgHWODJjMc6SRAFF6dDaEQDdVDPVDEhzn+kmUgHawcIgBSNYsVgLVkMhJWEUIE4QgYVBQeE0uSk50U/pZgVz/ZS88I4SESiMoVMUHOkN6eUFuTXE8vD6LUmkTolTHL8Ho3szog7OvjB51J0qIhIA/wm4ZQNtfw74OYArrrji0T2xbciZJicYMZ6VZtyLPGpnnIMqbs84R1kYjHMc6Q7Y3WosT5nTpaGfFQxNSVN70Wu0lfcax4qs1LTCiEgJR7sDXJBweGHI8U7KTGsHjSbEgUKU5ehCxnw/J4xhYalA40hCYa5bwLQQhULshGOdjEyXKBOy1CrY2Uh8vKMuIHcY7c9ZAY0wQFtLVloiJcTOkRaagS5pm4hmHC4L4nhqshErTQsXVFnTGmBzBPEwcPnY+33VshGTwNOAf6gyd1wMfExEXrDSseKcuw24DXwJgU04txpOdaSMek1poTHO0YpCVCDLGa2dcyzlBQ0VUFQhLkVZhdqkBZkxtKOQRhgyLHIyazDGMtsbMkgNe2caqAC+MzfAWMeJbkqUOHp5SZo7CpVRljFDci7b2SRNS451UpIkoFQBhdWEoXBiKfVDd20oteOSHTFhqBjmmtlBSqoNM03DVCuioRQGiELfswwFmmFYOWdKhqlBx14AW5UZYRRDOT6DZTSLZVks1eqpxGqRPH/ZDEG8E3iSiFyJF8KXAi8brXTOdYDdo/ci8g/Ar9Re5seWlQ6VUAVEVaxeEAiiIbeGSAKakaIRhkw2NcPckBUZjThAAqEdKBDviIlCIXAwP8woSsdSnpLNGeIIVOhQIQyyksQqipaBwNCKGjywuES/Z1CXCofmhohyNEPFic4QB5RW45ygnWFqKmKQapI4pNA+jnEiimnGAYvDHOMcF0+2UDgEH8qzlJWUztdhSbVGQkesQj/c1xprHRNxhA389Y9CcMAL3kgsVwpfPcvk/OesBdE5p0Xk1cAn8GE373XOfU1Efhu4yzn3sbM9Rs3ZszL0ZnyOL3hBiIIqTEUUCmFPu8mwck4ETsBBaR0SWDpZTifTfCfrsTAouHhnwh7XonCaQwt9wlDRH5ZYnBepfEhnyTA9XdIflmRlQa8X0UtTJpsNlooSI45mFBES0rMpS4MCQWiqEGMN2kDowGAIVURZlgzCkvl+RrMZ+vIEeCePw5EbSyyKXc0GrSSiNJbQQYn3PJfaMhFHxLHPqlMUxs+UMY6wsbqt8dGc41xz7tkUG6Jz7nbg9hXLXr9G22dvxjFrNs7pQm+KymYYUmWmNoYSSxgIzkJpHGHgw2S6mSEKYbabM9n2s1AmEkVTRfQYkuaGhV7KRBzQCwOybEi3NBydhzAQJlu7mGpGtJOIjs4RYxmkQ6IwZqbdoBWFSGCZ66R0+yl5kXHp7mnynmVnK6FXZqQZxKpEBTAVJ0RJQF5qji4NEBsQKmhNKdoqxIjFChSlYag1zSjEVskjgrGpfVpbCmsJrVA4S6hPzfIzYqVtdq3QpprtST1T5TxmPCW/snJKj3A8AYITCBFmhxnaWCYaIaVx9KyjFSpmmrEPsDaOdqIw1jIoCiyKvLQEgeVYb8BgaIibkIQBaWFY6PdxgcK5kjQvuWTvFAuDIWmqsaJRhGhr6KU5E5HFSclcLhwOLHnp6OVdhkWTKIoJRNGIYbFjaU4Ycgu5DshtSUsS0tJiNeyeCiEQppKYRCmO9Upi0WgVYJ3DGEu3KEhEMdWI6WYFSagIRGiEXiCdGavPUmXeXlk2FU51wtRieH5QC+J5yii7NLA8LY0qw3QQCOIgM4YoCJbzCjYjhYsC8sKwlBaUzrJnskFUBBzupsQq4NKpJvODgp2thMPdPq0ooigds90BE82IyIa0GxFp7lhYHNKIvcOjV2a0loQobGIp0QayvEcURXR7A4pmwWJfUdoMjGKiETIsHFMTJS4w9IcZi/2Ivh1w+KHMB2rvaWGW2gwzTaEtvTwnaQgREd2wpB05AnG0Y59STFdzqo2z2MojHQRCFPgZOSh8OYNqmqHCJ67QmaawloZV/j7Cw2q71GJ4flAL4nnKyiSpASfnLY8y1DSUr3ucFprSWhKl0M4yxFA6izGOorBEcUArVORW0y81S2lGHAm9nibaKQx0AcohkePE4pBD8x2UFCxlJZOmQbOlaCMcH1TW8b4AACAASURBVGS0VUEcx/SGfU50IChzMgeXSUmjFUIf5lKDtgajoSeawbAkVDGTU01mkgaLtg/GInqKhXxAO55iMUsZDEsaKmLvTIApQ7SypNqwkGY0whBtLbNpSiMICQNHryiZTmI/37makRMHAXGsyEuz3CMsxdEI/b0Kx+7vekkyVhta12x9akE8jxm3bymR5aQGYRRQ5vqUh7oV+q/CUGsm4xDnYrpZSRgK88OMEk2WWg6WXfpdgyQWF2oeONzjRLdPSwS7ZzelLcAVDIaWqVihbc5DxwztJpQ96DVg9mDBYh8ood0GiWGYgmqkDCzVzBVoTYVkfU230FwyaekOM7TEhI2Yna0WjRYMBiFz6RCsYme7ya6JBpPNyGfiUTGFNgwyw8xMQmH8jJtmFDIVR0ggqCogfVQJsLCWQMspcZoY/388hdha9Z9XS55R2xe3D7UgbnNW632slcxBZ5rMGEJ7skZKWmrS0jsbAhHSvKRbDSsjpbDWcrQzZJD5GERrITcFbugf9kYjZjIXbBCyOOiSpwVKCSUliY052jEsnoCZHTC7BA2BQQm2gOkpmJiGbODX9UuQ0n8pl4DHtYU0hM4RKDJLNz3BdDskjkOyKGC4GBEFloRJ4pZw8WSbiWZEXmi+cXSRhgrYt3uCTpEznC8otGUyjkE5Um2YTmIiFSzbCwEC5wO988IsF65aLqOAv6dp9WOyWuD2SntibV/cXtSCuA1Ya8i1Wu9jrfReo/g6Z08Wi3euqmLnLNpan4LL+p7PRBKR5prFgeZYr4/RQhhbdk+06A4VNtC045hjSx3KIsAGGhsK/VzT6Zc0EogmAtwslAqKErI+2AYoC6mFfh/SPixpiIHJDHoFlBq6QDYscQ56Pb88T+GhYxoJNE+4KGPX3ikmW020aPZEkyxkGb28QAUBjUiIgpDd7SbDouREN6c0hqndEZNhjAiUzlJmPjGEQogjRSlA5UAZiWVpLBiWTRDj0x1XYz3PdM3WphbELc56Q66VvY/R8HdlqvyRp3RkOxwlbs2tT8+PDuhkOQ0V0ogUhbEohNI4yqBgOm7SlSFLSwWDQU4japA0AorC2/dUM6DhHFOtaYryGAe/BQIsTGX0Suh0fYBqIKBimE5gbhYG2hfHi4AU6AxhZ6UxPWB+1q9PgYkcZAIigYaCnoXGcMCgn1MWlk46ZNgzpKZgR6vJzok2YQz9oqQoHTvbMYWzDArD0UGfSCIsPodirv2c7YvbLUIELY64CswemRvG53qPnFTr2QZru+H2pBbELc5aQ67RAzcuhiOv8ik9GSvLnuWRSGa5Hzr38pJmqAgCGKYWo0oakS/mdKI7YH6QE4tCIsPepM2wn5PmFq379NMYrYdYDb1ej24KF+/QDPuOfulFrDsPEwqGgOn6ZUEXjuNf94BLgHlgFzAHiPXtS+AEMMBnIGkBZQHtprc5zh6H7qJhx15DuLjIkW7AjAooRDixUFAYw16Z4rgMuXxmkt2TDZYGBZ0sZ5AKeyehtEIUBUw2YqLA12Sxzi07VkYZtUtrT0kPNsqduJ4Y1nbD7UktiNuAjUwhW+lVHrUDPwslGfOIFtaCc0w1fKZqFQQ0Qz93+USespRm9FJDK1ZkhWGx7x0lBAFT0xGDboY2Q+6fXaIVQZ6DMXD0eMGDh8ECOV7MugY661zb4bH/DbxYjr6UCi+MTeAIcKgHO3uwu+1tkHECUsChvmahA/v2QSMA7YRkqMgmGvQXCrS2LBYpRQ5TSYyK/P3qDgocjrAV0FQhqdaU2hIkEVmmccLJYTMbL3xf2w23L7UgbkPWeuBWDpNHCQpGOQDBC0KhDQ/1MqaSiDgKEGdpxCGRMgy0w5bQiAOcFQa6pN9NmRt2GeaamUbEbD/nonYMDooMDh+D/hCOVuI3AyR4YVxPDFcySpSpq/+L+N6hBQoqO2MIg4HPMXf5HOzZAYUGncNCB3Y0YbIFGYa0X6BDy33HhsTHQy6/aIYn7J4k15bFNKdflkRBwAmbkjcMsfIOFHHe266qH5lmEm54eDwK4B6339ZsH2pB3MKcrnbwWix7P7Vd9qCO8iBmxhDgBa8VK4alpmMM/TRnkFlO9AZkRvPkvTMs5rkP3G4qkoEiaQeIC2goR8cYdiaK1BjiBNoa9qbeGWKBPn5YfDa08fubxotlDJyoHC4a+A6w+wREbWgkEGooHFgCEkK0K0mCBt1sCZImOycStLMc6w6x1rF7qkEzDhhkFh1ZJqIIpYLlKoKBnAxLWplVe8R4b91ax7DQtAhPhunUPcVtRS2IW5SN2KFWCuZ42qqiMMu2Q1ultwpDHzgy1BpdWjqUDIqC492U3rDEKl/XxDro6YLD83063QFpmmFCITSOE8MBJrUcXSiYmoTeInRSH0rj8H/dTboHo/0sVP971f+o+u+Awx2Iqm5oksIlAqZtSU1Odz5lqpXhnBDEwvFOxlJasNBLSeKYqWZMKxZm2v4x6OSl7zWHiiRWlMbP7LHO0YzDVT+HlanVWpzsjddiuP2oBXGLcjo71GrhNaO8fkVhGJYa7SxTKsZaR78omSAiUYrCGKZaMcZYSqWIg4CZyRhXwgODRZphTL9fkpuSrEgpBZoOShcgxpJp6Pd8/OBC7ntuhx6DezI+LyTGD6dzvJ1xAggjyA2kfccgKIhDGOQBE62EhooonEFpR6otl80kREo40UlpN0OSwJcaaFbmBa0tSaSWQ5RWm5Uy7tgavR4PxanFcPtRC+IW5kwN96Maw4W1NJSidLJcS8TmJYO8JNUaY31qf+18XWRjhZl2hEkMdlawseHQwoBeP+VQZ0BTYEFDHENRwPFZ3yNs4h0nj4UYjlOMvR7ZHfcAQQrSBizMduGSnRCEECvFIC0JSGnumCASmGhGZMaSFprpZkSAkFvDIC+xhaOTlUwnEbsmm7Tw5VVDe2qIU16aU+rQ1D3C7U8tiNuYtUJuWnE1DW+oSQvth3si9MoCHEzGEZk1uELTUIqLZhI6WUGaaYbpkGEppP2STA3JehBEcHQBJqcgy+D4wA9fp9m84fHZMgByB0dn4bJFMNrHK1pdMHFZg8AVzHYylvoD0twhkfDUi3bSaoZI4IXMAanRXhyLkqzqKVrryLUvbDVek2U8c1CdJ/H8oBbE84TxaWSjpASjhK9aW8T5Mp2IEBlfTS81Pmi5n+fMd0oaTcfFu2d8sfhJTXchpDMzRzEA63zvsNR+Wp3GO04SfNzguSbDO3MAZrQfRtvj3vEyyLtcdFFCwwq7L5pmZochMhFHugMm44RAhMk4ohH7oXNmNWnpaFVimBnjE85qs6YHeaMziWq2NrUgbnNOSfOFT2M1sn2FKsAYy4k0J1EBSegzYfcLzcIwZabRoNl0WAtLzQxrQ6JEoIgoAoNqBshxODEHsz2g64Vn5D0+k5CaRxs79voEMIUX7WYIzQR2JBHNZosoES5q72BgcmIXIQJpVlIaw6RNKErDznaDJPamh15eMJnElAi5NjStf2RGzqs6HvH8ohbEbc54QPZoCFcUBleV58xLw9IwY+9kE4Uw0YgphinD0pCVQ0IVoK0mkYhDnR4EMBj2mV3KyYZ9cgdxCHEAs9bHGG5lGtWfAEkI020vlj2Tk/csuW1jSsd03CKYsjTCiPvnO+xutDHG4ZwPRwpdiBLoF5rpZkISqFOCskfTIWH9dF+1GG4vakHcomzU9jSevGGU3quw1k8/U8onc3DCYloAvtZxokIun5kgK0uOdVOOdPq4Kvbu24eOMCwL9BBSA/OLMOj64fFWsReuR8ZJR0ugYSqAwyfgyNGSfZeV7FcBYbtFEWhmlwxLSU5gApotQKBIS4alIYoCdrea9MrSmxyUT6prnE8YK0oIRjOB6nRf5w21IJ4DTid2G32oViZvEA1RrAhtldorLVAqYEc7YjKKGeqShWFBK1EYa1hKNe2mIuoqRBxhW9CFod8FbXxShrm+F5hRMMl2EMURDl8OoN3wITlxAt28JBr02RVOMEhzyHwP++C8YyaJuWznJK0kZDKKaSWRrwLoLDq3iAgNQOOICUDV6b7ON2pBfIzZiNht5KFazn5dJW/Q2vqSAManrUpLTb8oicMAhWJoSoyDbpU4dX5QsDgc0kxCekWOGAgaELUjotQwNFAY703urXkWW5tJwFqYm/OhOlkOu6dzSjHML3ZxkTAZN7lk30WU2hE3FJNJDEYIk8BXGxSpnFEQITQa4bJJIi+953nl0HllsPxaacJqth61ID7GjETsdD2IjfYgAXJjSJRaLglQGu9iaEUhoQrIiozj3ZxIoJkoJmJvN0szw1Ke0y9yVOnoDzRlJ6PT8+ErET7w2WzWxT/GHAVsHw7i7YrTHUh2Qm9Rs5T7vIxXXByQ6pLdzRY4YT5N2T3RIteadhIThQFR4EVvNAVSlK9HDSen9I1MFuM/ZFrb5al8tShuD2pBfIwZPTjrpY86HSuni001YsD3WNCWaFQdzkFWapIoZCLWiAKxwtH+kCMLQ4wrCCQiNMLOHS3yE4swESFLJREwOQmTvbOfk3yu6Fd/4If8HQOHjkERwMVTMLVDmJ5UiFYU1hKFwnwvZ6YZcbxn2e0cSgWU2rJnorncG9SZJtM+o/Yo8/holtD4ZxqGQS2G24z6k3qMWSv1/NkweuAGRclilp+cdobjeCfDOUcUKpwGKw5noNSaQWpoJwoRS1oYWhMtdsYRUxMwCyz1fAjL+UAGPAR0+97ZMjkNkTgWhwGdok87CTEWjnUGHFnImE0H4KARqOV6M3lpyDJviugWBYU2y6UH1vpMazHcXtQ9xHPA2YrhanbIMAzY2W7QHeY+0an1Hud+WbLbxUQSYEJDZ1DSTAJmJhtkcyW9POXQXIdGY0BsDQdnM+550McYLp79pW4pRrORpydg0IOpS5rs2dXkssmdZFrTjkMu2dEibECoQzpZQeEsygmI7wU2o5CpRswU8SmOlNq7fH5QC+I2Y9yZsnLGRFEY5gYF09YigdAIFLvbDTp5yTDTHOv3OTqX8pR9M1w81aQ7SOksZuQmZwrFsUHGUjUtb7vaDU9HgZ/ffOQE9LOUJEo4rOfJS5hqJVy6a5IJFdNshexoJ4jzcYxBILSj6JSZKnlpTnGk1GK4/akFcRuxMvkrVbqvUdhNGAbsmohJAsX8MGOAJhBHUTpsYFBBgKbkWHeANo5GHKMnNK1hwvxwyP0PwETr1Kwy5xOCHzofOuKn9rXb0Bv0SLOcOApJQrXsLBHnWBzm9LKSHe2YZhg+LLONEoFg9aw3NduTWhA3kUf6MGx0u1OcKaNttF0OuxlqTSCCBMKuVoPSVevImD9e0isL8rLk8HyXECFuxpTWIqHj6GGwOZjYz08+H3F4U4ADLmtB0oRh3zAzIcQJxLHCOEdfFywOLSWWxEVMxjGFNZBD04bLDhQnvgbMyEkGnOL930jYVM3Worb4bhLjQ6iVy0+3XWnsmtutXL7alLBcGy9sFnCgqyGzQphKYva2WhBYJHAkccjURIPp6Qa7JxuYAhyG+UV4wMI3Ot75cL4yKkUwtceXP+gVEAQl3cxV9Zg13UHBscUh/YFmekqxYyKmNJa5XkZaaorSUBqfMEOU4MzJrDejFGyjz3T88xv/TFf7zGvOPXUP8QxYa86q1nbVX/vlDNajQvFVkO54sO7KuEStfQzhqPylE5bXj6f7GnemNJQijhUpmlwbrPa9nIVhSaAsrTDCBdAbGALxGXAWFjOWwiGdYY/evKHUPpD5+KN5A7cABt9LXDoBSqA1BXv37KY0JdONmLlBThQG7JxImGzGtMOGr2ntHLnVuKq+ta28y+IgNYYyszRjnzcxCdRycarR5w+nTvGr7Y1bk00RRBF5HvBOfKG0/+Kcu3XF+tcAP4tPQDIL/LRz7jubceyz5UyKB41/ucGHYSgRhqWmFYXLoRdF4V0SaalJlAIFw2FJZg2NQNEvS2aayXKarlG2Gmsdc4OUJFBoa5loxEQqoLS+UPr4Q5ZEPtnAcFgy0Jow9NlsRp7lwlqcaOb7mn5UsruV4AwspikEsJQP6C4MmJ219IbekXKh9FdCoF/VfzGH4cscJUlgMGOYnmwwGbfZMdmgHUe0IkU3LemXJXPdzJcTiCImIj90nkgin4zX2IcdZ2Vs4sopfjVbj7MWRBFRwLuBH8AnT75TRD7mnPv6WLMvATc454Yi8vPAHwAvOdtjny3rhUqMhGokcqWxRMr37ka9N20sUqXYysUwLEuaKuRgt09ThcwOU/a0m0jg6A1LVCC04pCltPT1ThQ0gpBOkdMOI7S1fPP4EnumGxgNlwJJqAiDgFAFdAY5Bp92avSgaRztyuC/NMzRzhIFARKGZNrQGfRoJTFJHGCxDDJNqQtcYeguWpyCwPovwsMf6fMTh6/TsgMQgYU+XBTB1FREu53QHeTsKBImVILGIAHsbMYo8Z9fiKBUQCzVd8NaSmdpcmpN7JXfq1oEtz6b0UN8OnCvc+5+ABH5EPBCYFkQnXOfGmv/eeDlm3DcM2a1pJ4rp9FZ65aHrYX2NsFIBWSFxgQBC1lGPysJlYATnHN0ihxtDEt9Q5w47jm8SBAZityRNBU6hbQsILAETpiemQDrt33c7ikemu+yo90A55hdyomjHT6rypJhcVhgrOFxO6fItGGmFRMGfq7yzmaDuJpWFgRCFARY40AgDALiUGjEMZNNRSctaUYhjSTA6ICcjPk+pEPYPQ2tnk/8eiEwiq+cAbSC6aYfPi8uptgiIMfS7ZdMNHLmT1gmWhF7JhpcNNGkUWUjTwKFoapm6BwTcXRKPOKoB1+zvdgMQbwMP110xCHge9dp/zPAxzfhuGfEakWZwNt1RvY5rS1prjkxHKJcQBwGlM4QSsBDS32yQvPQQpcsLUh1TjNOWBr2OXi4Sy+FmQmfEOGe+/0MD8EnKg3w84INfpj2+MkFyhxSC/v2QjcDPYQ9u2DP3ojF4QL9vmH3zgmUQHcp4/5dTSbiFlddvovABaggoDA++QBWuHi6RTMOkQKGpSY1mt5Q04gC5gY5x5dSLt/dYjppML/YQUnC7kZKNgFFNXyce6w/lHPMEpAPYDLyqc6arYyLJ2fYGYZkTnPvsQ7NIGaqHXGik3LxTIvQBOTGYCNHpg2uyqgdycm5ziPGSwzUbA8eU6eKiLwcuAF41hrrfw74OYArrrhiU489PoRZjucbq7ubZRonkJYlS70SFUE+LDlyImWpGHBodo4HDqVYDb0eLAy9wfQhTi16tJLVskrPj6WP+daRsRWHgcMlCSU7gYuilLAFJzrQiHo8bifMdTrs2DHNZdNNBnmDIAhIC40KQUQw2hFHAYkLWEwLJhoB1kY4hhxbGpAby6C0LC2kLFnoH4fZ4sLpHY5j8QbtyxVMN6AVxeSpJmyHDPpDgiBi1+4GgmNxWBCHAbYNpfZmiRAhipQPdVLVlMxozPs/VuemFsXtwWYI4mHg8rH3+6plpyAi/wr4DeBZzrl8tR05524DbgO44YYbNtXGvzKMZSSG2li6g5xeXlIYzZHOkLlhShzCkYUh//zNg5zowJfmfTDvY0GOz9RytOSkopawcBxmO4vMXLTIJZMhu3ZNsnPHBJe2pxkUJY0gRALo55r5wZAjnT47ywYzEyFxAnMnhoSJIw4MpfUxdHEIS8X6on6+sgPfc3fOZ9cmVHT7KUEAQ2PY224ShMLB2ZTpyZBGFBGrgHYUkpcWFfqQm9FUyXExHM9kXovh9mEzBPFO4EkiciVeCF8KvGy8gYh8D/BHwPOcc495voCRI2Rk78FBYQ2DTJPqEuvg2LBHPnQc6Q647/BBjh013HNsa8XkzQFzGfAdeGqoaSaLPP6JA4qLS3ZPNBiEvmJcGAjz/RzEMswLDi90SHPNQrrIcM6Ql5ajs6BLWCguHGfKSob4a08AGwlFlhFEEXkRIlrYM9VCOQhix57JBhNJhDhoRxGZyZiOE+JY0U0LJpIIqHuF252zFkTnnBaRVwOfwI8i3+uc+5qI/DZwl3PuY8Bb8LXE/1J84OpDzrkXnO2xN8J4AXelhM4wx+IYFoZOkVMUGu0M33pwgaVhn8WFLl/4JjzwWJzcWfB1DWjIv1kQu3lQsLMxQRRETE8qhkVJg5CMglwbesMuhXa0YkUUO6YmHIuLPj3WY9Xz3Wocx9t5jy5C4RyXX1ywYzrCCkxOJUwkikMLGQ0ldAaGtBhgq1rW2kBYpf5KQrXs2BoV+KrFcHuyKTZE59ztwO0rlr1+7PW/2ozjPBKWs0prQz8rONJJmWgqmqGiM8g5cN8xFoYdvjObceQ78O1NPPYuOnxX8BAO4Wt2Px0mNnHvnq/m0P1yya7vHOOaKxR7Lt1JaaeZmkjopjnDJUthhiwOM2xhIPYpsB467h0p26kkwKNBACw5CHpQ5PC4Swe4aMCe6Wmm4gaBwI7JNlHomEhissJQlA4CH2caO7UsgnDyB5g6U/a25LyaqTJecGnck7zsSHGWMPRT275xtMtSntIpu3zlWxlf6W1eT+kyZnlD9N+4KfgKhbdSEaP5pLmeN+p/yxzTm3Qkz0PAQx148CuGK++b5SlPWuSpT9hHmhuGJgVCbGY4PoCvHvZDxQvRZrgaBh+ULhqiCIY57GwrmnFAbg37dkwQBgGLfQ2BMB01aDUULXUyzGZUvkEcxJFCiY9NXFlOoGbrc94I4spMMMoKaaEJVUAS+alUONAY5no5X3roGP1ejxNzOfduohjukxP8dfwbTJISiqUxtufnqTt5uvom/3v+e8w+CgU9F4FgCJelmvsPHaM0oLMcCYXFDA4fvjC9yacjA1qACiDNwYYBSRjT7af0J2Jm2jH/P3tvHiVZetZnPt9y14iMiFxr667qRSstsRwasdjsIDDDZrMIg22JxYJzxnjODLbFYgbGLJYYz1geHwbBYLDYBjF4sAVmk80AZgYNaiQkjaRutdRd3V1rbpEZ292+Zf64GVGR2VldVV1ZWZnV8ZyTJyMiIyO+WO573+9dfm8zTIiUpsIyqgTtMJokU7yAUEi8vCYUa6t7VUDt3uaeMYi7OgOm+oEjrShLS2EseWXp9S0XegOkM1zZKHjiuYPdNr49+GnmGKHF85PkgbAs+B4/Gfw8f7/6Rwf4rNfoAZ/8BFxu5ggN1QAKPBtlXWIyY380EMcwyiH1oFPFYKvkmcvbSKM4MZ8ShQ5TOnJnyWJDuDOrWQlBtlOvOvYKZ0mV48k9YxDh2tZ4nESJdB3b6WYFFodWktacZHTV0qtGdEdw6cYPe9M8KC7ziDi/rzEcEwjH58sPs8zWHfESK+CjDlq9ukXtuE7MO2wUIArQcT1DpreZYVTBUuMEcw2FxzLMBN28YKkZMswNOr4m2jEoKhbTePJ4M+mv48k9ZRDh+QOYpBS0nSezhiuDjFFlKMuMYqtie/1gM6yfJR/H3YSiWoXmM+ST/KH7rBvet0Ofk6JLRsgz/gR1XvTGvNSTJbdCQJ1tvzqARQnCVmz3ugwrmI9HPL3m2RqMOL3UpqkDNnqwHVa8QncIfZ1hHg+b2juadC+zUQNHm3vOIMLus7MxDhVIEjQicKyt5vTygssjf+BbSIVD3IRmjAfkDe73iDjP9+l38dfkRygJUFi2afAO8zX8sn39TRneGTdHtfPTAFwGG+t1W2VlYKmzTdMbhoOSaiEljiIGeYkoBWtxRhJpFohpReGu1r29CZXZqIHjwT1pEGF3Mbbw0K9K8syjtaQhFba4NqLyoPiYO4e/CQ8uwPC4v/+6f/98+SF+NvifiSmRAiIMACklb9Hv4vPlh3lz9X0zo3jArAFhBf3LkAZ1X/pjT+RocsIAtnp9rp5YoJEmKCUIY8m8SQikJAk0CEh2xB+mt8V7vcKZMTy63JMGcTqOaLyjX5R0RwUIj9SQS0ca1lulg9wy/5V/mFXf4UFxfZlV5+Fxf47z/tS+f28x5B3BvyQV+xfGpKLg8+RH+A71u/y8/eoDWfeMGstOz6kDWex8N3bS8gtArw+9YpM0gqKC3tmM15w7haQu1lZecKLZwFJ//2KjiGO9r6rSjKPJPWkQ98YRnfcMypJ+ZtnoF/hMcOZ0xH0XigMtxAbBP6q+h18O//l1DVpGxA9W33ndR/gG9Sc33HanouS79e/wb+xX4Wde4oFi9/weswls5vDh83UUNwGyYgOtBafa8+SrFQkxLztd8uB8G70jHCxlPQBsPHdlZhSPNvekQYRrGWetJZFRRCpgqSlJQkWsJVe3tzmxvMba2sHOH/5L/0reWH4/bw9/mg4DAgweMGhWfYd/UP1DPubPXff//6b6v69rTKdJKXmluMDj/mBVgQ6LFgO+Sf0pr5ePobD8hX8Vv2xez2UW7/bSboinLm7/84uwub7O2VPrPHB2kYdP64nOpRV1A0Bh7KQ0Z2YMjz73rEGcVrwOQ0UrCigCicex3GzQzyvOnAlIk4o/evZgt87v86/irxX/C58jP8ZrxVN4BO93L+f9/uXcKEuckt/Uc1jkTd/3qPGF8oP8r8HbEfiJ8X+tf5rvUL/P28wb+EX7VXd5hTdHDnywgO3zEDc3sNayMajjvZ1GyEIcg68zz9NVDzArvTmq3HMGcdcclJ05F5FUzCUho/6Q1e0SIeBTTi9wohPzgSef5TMGGVc265pEc2ArEbzXfQrv5VNu6b+e8yu8jMs3vF9IxWV/9L2pvbxSPMvP7BMjjUT9zv8T/Rtc8Yv8nnshjeGjxXlg8ROweWKLh1zJ6lLKqIqhBYvNZFKGc70ky4yjwz0VgNo73lErOWmlAujEMacXYxpxSCg11gla6TwPnhZ87mvhc5dvtsrvzvFO+xUMfHzD+33EP3Astpd7+V79W0Qv4I8nouQt+tc5biOv/jKHv3gG3v/xEe97/Bme2uxSOY+19XCyaaQUu76XM44O95SHuLfGa9w+NT2p7v5Oi6bOGZoKJRT30t8qSwAAIABJREFUdVKeO9Emq0oeODlg4emr/JdP1EH0u8GfuE/lOb/Mw1wiFPv3w2Y+5G3Vtxzyym4fgeMr5GOoF+jkAVgRXR4Sl3nKnz6klR0MfaC7Ac81hswlQ7LTBUOj8YJJ4fZs6t7R5p4yiLD7izb95Zs2lPPNmHliOlFJFLZZTkcMyopPRhFaa+bmrnJpzTDowWO9wxVQ9Ui+rfwh/vfwxznDOk1xLU6Y+wCP4Puq7+Ev/KsPcVUHQ0R1U4XrBkWb4SGs6OB5CsiehbCxyv1LC4SnAjSCTBqkECSRnhnDI8w9ZxD3Y2+RrPV1sTayloDvpDGx1sgVyQMLczxy/zJPbWwzygrue+YSDQWPPwcf69YxxjudytikxVeV/5wvkR/gO9TvcVaskhPy2/Zz+VX7pawxf4dXcGfICSkJ0Ow7QWJCiOGqP56vEerxD/0tGPmCXlEilUQKQbqjqj1LqBxd7nmDuF+XQEA98F0h8ALwkEYBSaARUlBUhkiElNYgpEJ7zQNnK77YGM5fvcL58yAsbPTqkp2NO7Bui+I97lHe4x69A49+txD8hv0CvlX90XXDAQAf9ee4xNIhrusaMQVfKD9ERwy46jv8mXst5kUcJh+5DA998gJl7nndgyukrcZk2zxLqBxd7nmDeL3eUev9ru3LdHdLEmleqRSVd5xsJXTzAiUUhalox03uX9ymlaasbw0ofMlzz/WxDtY34OnhwdY1Hjye14nH+XT5CTSWS36JP3CPknHjRM5B8A7ztXy9+n/Qfsh+9iDzIT9eHf7YboHjv1H/jr+vfxeHoC7QkjgEP2XewK/aL7+lx1sF/uqZCqtWeeDEHOc6baz0aJglVI4w97xBhOcHsPczklIK5NSs5jBQCCtYaqYspAkCGJV158EoazLfCljvzbPcDNl8WYmS8NzWNk9dWucDj/d53xG0il8p/19+WP8KHTEgxCBw5IT8JD/Pb9gv4ifNt+0ofN85rrDIN5Q/yr8Nfop5+qTkSAEDH2NQfG/1vbzfv+KOrmE/flz/wk5R/PO38z+kf5UmOT9rv+aWHnN1E9xDFYO+YVCWzMnooJY74w7xkjCI+7HfGXp8mzDgxfMnp6VxQCeN2M4KlJYsxZZWEnG24xhWFWEQEIeazBiKj2R8aHRoL+eGvEn9Pm/Rv06yp/6vuRPPe4P6Yz5VPsXfLv8pBeEdXcsn/Rk+v3w7nys/yl+XH0bh+KB7mPe4z3xR29Pb5VXiWf6W+rPnvTdjUlHy3+rf5P+wX8gmrZt+3HXg0lrFc/NbnJpvcv9CXW7jBbtmhM+8xaPDS9YgXo+xJLwSYqJpN4lDKkkca8JwZ7JaY2dWixRoa5mLNK85sYxxjq3tT7L6cbhyl18PwGvFU/yTfYzhNIkoeTXP8oP61/gR86ZDWJXgz90j/Ll75BCe64V5k/p9ghuU5HsE36z+mHfYmx8WmQFKQBRrGrFEeEFWGZJAX5vzM4snHinuqcLsg2BcNDst8Lm3kHbcsD/+rYRACEErCVlsJLx8aYGHTi9x9ogkSr9Hv/sFi6HHJKLkm9QfkxzTlsAXyyPyPFq8cHFVIkpeI87f8mN/8jyURUVWObzwFKYeZzH2DGfxxKPFzCDuwwttp/cjDBWdNGKlmaKEwHvJq86s8Nmf2uFT1J1c6Y1JyPky+f4bFkOPcUj+hvyLO7yqo0Xhby5EMOLWY4AD4OLaJk9f6eFsXdkgxfNrZWccDWZb5ttkfKbXWmKMQ0jBUjOinWoq4xl9VkXjiSGPde9OM9qS2MagJiKzNyKh4D6xfodXdbR4t/tcXi2fobFPQmXMwMf8nnvdLT/2CAilwIcWJcWka2VmCI8mMw/xNhjHgIxxk8tSCDpRRCQ1ZxaaPHL/aT714QZf+TA8fBfWaLy+qe6QMR5B9RI7T/6f9vNfUH3ceeiT8ifu0275sSsgrwo2Nwsu9AcYd5h9TzNulZfWN/+AGSshW++R1KMnx4axQcBp0p1Zv5bFhQFBsErjKfjQIU6JX6VDSUB6k6Ppc0L+yh+86b5PrPIl8gOkFFz0S/yhe/SOZ7NvlgEp317+Y94Zvo0As6tovPCaETF/p/yBFzWyIQY8Cq8MAYpYqcnslZmXePSYGcTbRGu5Swl5/DvYadcqjOXcUpteGTEaGrzdJN2ChRT+v2fg2Tu8Povineb1fLf+bWJx421zn4Q/d7cmWfZCzNPjXwU/zevk43hAYykIeSv/G//afP1O1vbuG4bH/Kv4ivJtfJf6j3yD+jNSCrZp8Gv2S/i35itZp/2iHrcLrG1bzp1WKF2raCspiYK7HFyesS8zg3gA7J2uZr0nUJIk1Ny3MMdCGlNYy4NLLc5v9Lm0OSBtKBYXLnPxco4NYbsLl/r1FmtA/bsDPJTW098aKaRNuHChHvOxegvr+yX7et6o/5DQm327Q8aMfMhPVN/GQRmoOUb8h/CHOSk2d3ldwU4W+x/qf09bDHmb+dYDeb7b5YJf4UfNt/Oj5tsP7DEXgNNLAa88Oc9CHOHFTD37KDMziAfMuAsGmLQCBoHC4llOG7SCiOVmyma/5OFzjvuXLV57AqkY5COSKGC7nzPq9wnjBkJ68JL5+YQsqzi1tM2VrYqnz9fKKjfDBm2+pfxhfj38MRJfTMRYx1gvKAh4u/kGfsd93oG9F9+j382K6F63bzkVBd+u/oB32S++7tCt485KCKeWlzgxl1I4x3wUoQI52zIfUWYG8Q4w2TbvKrjVeOtJAk0aBZxqVrzCtRkUJcY6Vkcjhr0GaUvSOBnRCBVbWUFeGTyeQGpGZUWzEbG2fpEgghuIxuzicX+WLyv+BW/Uv8/fU+8hwOCQBBj+xH0a7zBfc6AtcxrD31XvueE2XeJ4k/oDfvRQisEPn1OLUJUVm/0S42E5SXZlmWeG8WhxIAZRCPGVwL8CFPDz3vu37vl7BPwS8JnU4jBv8N6fP4jnPsqMv+jjIm8ra9mxJNK004iytFSNmFFREYWaZEkihKIRKJSSrA9zKmtpBiEWy+owB+s5d6aBZsjlC9C7hfWs0+Z/Mm/g7eYbOSU2CTCs+TYD0gN/7SdFF30TSpKhsLxOPn7gz39UOLUiWGnPszwfsZSkCLU7vDLrVDla3LZBFEIo4KeBLwcuAO8TQrzbe//Rqbt9J9D13r9MCPEtwNuAN9zucx8ntJZgHBaPMQ4pBUIJEq2JtMIDnSSisBa9E3RPtKZyjkDKSSZ7kFecWJ7nysaLF1C1KC745YN7cdfl5sp9/BFIqtwptBbMz4V4t/NZT/XHX0+Jacbd4yDqEF8HfMJ7/5T3vgR+Hfi6Pff5OuCdO5d/E/hSIcRL7lugtUR4GFWGorKT4LrWkkYU1IISqs4+SimIY00jDghDhRICpSUNHXBqvslcGnCUo26X/cJN1TOWXvNed/zUv2+GCBhknu0sozKerDKTeT9jZsbwaHEQBvEM8NzU9Qs7t+17H++9AbbhGE5IOgDCUNGMgokWY7UzGbARBxMllL0Ula0LwK1jLgl5oNPigTMrvPoVHFntbIvil+yXk/sXNooOwTvtVxzSqg6XeaARaZaSJq1EY6lH4+41ijOODkeqU0UI8WYhxGNCiMfW1tbu9nLuGGNhiOnm/rGnGAVql3CtlHXBdxQoYqnpJAFaK155cpGXP7jCQ01uQZDqcHmH+Vou+SWK6xjFkY/4WfPVPOtPHPLK7jwh8NmfAg+cOcn9iw2W05RGGDxPUm7G0eIgDOJF4P6p6/ft3LbvfYQQGmizj/K+9/7nvPePeu8fXV4+jBjX3Wc/8drr3aYDSShr4dpWI+Rku82DD0lefkQt4pCEry//Gf/FvZbcBwx9ROE1fR/T9wk/Zd7Av7TfeLeXeUf49AV42ZklWmGCd4KRMc9TUZpx9DiILPP7gJcLIR6kNnzfAuyttH038Ebgz4FvBP7Iez/bN9wCWktSpSmwxJGmHDm0VNzXmYczGwgJj23d7VU+nx5Nvqv6x5xgky9WfzVp3fsj9xn3bM+0BM6ehoeWl1huNmgnIZG+NhJ35iEeXW77G+m9N0KIfwD8AXXZzS947z8ihPhnwGPe+3cD/wb4ZSHEJ6hHHh+/ocJ3Eefq3tdRZTA42lHIQhyhVZ3BjOKQ3F+ms1V3sRxFrrLAr9svudvLOBQ+qwkn5xeQSqJ34sKKnXixfb4S+4yjw4Gcor33vwv87p7b/vupyznwTQfxXC81xrVqwtcHUuTrGKMxDmNAWEWahkgDp+rKHgZ3e9EvYR4Azp2Dh04tshAnLKQxTR2gAjmpKpgZw6PLvblnuYeYKOrgSUK9q9i71dAYEXB2vkX5svs42elyZTTkvR+9tV7ng+IV4jnerH6HL1PvR2N5yp/i58xX87vus1+UUsxx49EmvOwhxWsfOssjpxaZiyMirVA7quqz+OHRZ2YQjwHTijrTHmMjDBiVlpVGkxOvSLhycoE//tDHONeuaGzD04e4xr8l/5SfCH6BADOR4/9U8TRvC36Ob3F/xLdXb7lnY4Yh8Oo5eM2rYh44eYqVuQZSKppBQBCoWTLlGDH7lI4J02U4wjPpXOkkIc1IIQnw0hDFLV7zMsVrXgkPHtLO7NXiGX4i+AUSUT5vNklDFHymfJIf1L96OIu5ReZu8/9XgC+4H173SMrnvOJhPvOBZc7Nt4m0RCk5U8c+Ztybp+x7gL3ZSDflIY5VdOJQk3hNFQT0yoJzagHzsCerFrnaHRDrS8x9Ep7N6ya67Tu01u9Wv/2CU+sSUfIG9X/xP5o3MCK+Q6u4dTpACvRfxP+eBprAuYfg0Ved4nMeOoM1gvkkphNFu0YFzPqVjw8zg3gE2dv0P319jJQCLevrVe44MddgkJX05+a4sDHkzHKLdpKwkFziwSKjuwEbl+ETvlY7PMi5el+qPnDDqXUWxWfJJ16UDP+dQFG3Ss1pkKYeGaphYq5XgQRwXMvcnwHuX4ATyxAEdZJrsdHhlSsrNMKQjbIgkoowUFTWYb1H88IzVGZlOEeLmUE8gowTKdN1a9PGMFDXxB7GxjJynjQKuK/ToBEoMmdYFQXBQ/cRXFhnQQ9ZWixZuAiPb9YHvqSugbpdbjTTGGoPNbrJMQaHgQVKagW1hPr9OLUMKgIv4FxRi/KqCFQFWxZOdSSBDFlZbKKIWGzHnFtqcXquiRKCdgJJoCcCweOOpOsxU7s5eswM4hFkvC3G1F7G2BgWVS20GgUKybXyjUBJssqQlQbjHUjJnIxoLgXkJmF7VKIGisQ4mqqHlYZ8BFJCawCXuSVpxefxjD/BK8WFF7xPgOUTfm+L+90jAJYbcOI+WL0CoYSVJWjEmkCGCO0pSui0Ik51FrDSMRfFbI1GSB9wejHmoYUOC0lMHGhya2nH0cQ7RN744JpWu5l5ikeDmUE8gkwfKNPzWsZDrKYPHCkFSagZFhUIWEoSSmPZzHI2M0NZWk7Op7TSiMpUbCcx8/MZn7zUpbsFLQ/BsPaYVnlxNYw/a76aHwt+8bpjPJ2HJ/0ZnvKnX8Sj3xnmgN4Q2v36IDh1ClbmW8RBQhQKgkDTy3JSnZBGAWcW5lhMQ672G1hvONFo1u97ZUijgFTWh1JuLLFWN/QOx+wNicyM4t1lZhCPKNc7MKz3u4zk+L5SXIspKiVJwwDrPH0Eyzplw+esFwbrPKcWF6gKRyi2WehAXkIxhPY69Dw86+uZLjfLu93n8W3+P/EIzxCL3f/pPGREvKV68y2/B3eCaOfnkQ5EHThzMmBjs+JEp0On2eTMSsrVbk4kNQ+daDAXh0RKEymJdZAoRasZ044ipBdUoh5B60Xt2YdSEoa3NkBqpot4dJiV3Rxhxp7DuHVvrI4z/fcxjTigFYcIVd+nGQQ7XRGeSCnSKCAONFGsmU8iluZbzDWaLLdSAmBrG7YFJKouJbkVDJpvLf8p/95+HrkP6PmEvk/IfMjH/Dm+qfwRPubPHcybchu0qDPDCugbaEiock8nCVlaatJJY4RVaDSNWHGm1eT+dhOlJEXl6BWGOJKkMiBRmjBQpFojVD04CpgYxluV+DooY7j3eW90/Xq3vVSZeYhHmOlkynSWubJuMg96/HucyTTG4UT9v9Z5tJBUONphROtEwPk1SV5anIfOfISoBP04J51zJAaWFkBfge3RrW2fC0K+33w3P2n+Dp8tP0aI4eP+Pp70992Bd+bWCagLqM92oL8Fcy3QEUQqQIYCLTS1XRCcWogpSri8PSIKNIlUqEASSkFrp/vECzCujvGGXhGGCu2unazuxhb4etUJ4wQd1HHo6V7q2XZ9NzODeMTZO7DKuWvGb7x1NrnBCc/WqMBRJ2FKbxnmFq8sGEmJ5b5GyiCreHxtg/6oACuImwGNRNJoOjZXYW0T1ke18Yi59fKcHg3e4x496LfhttHUr0l5EBoaChY7TZqNmLLwxEHAq0/MI6hb7HpZTmnAWk8rDViI47rQempL7Fwt+DptXMYdKXfDwOzdeo+rFcaiEoGSu7zB6QqGm13rCyV/7oXE0MwgHhPG3t/YGxzfVpaWflnRcJpgJ4bo8AgnWGqGBEoBno0sJ3eWbpaTDQ1zzYCisBQjS155Ql3X1pXVNSN4dIpkbp8QaEpYmgcrYL4FEs2wKHGlw5SONFRUzpNqRTzXRAlPbhz9omI+risUK+cIueZhKSEmYY1RZWgyDlXcHcOwt5h/b3JnfLksbV08vk+We2w0904G3M+bvJm/HSdmMcRjwnSHyvSXLAwVc2E9j0VKQSAlUggiqWglEbFWlM6hvGJ9kLHWy1AKFtMGc0mCDGrvaC4GqaE/vDam/sYz844PDhg6+PB56G7VZUZBCKpS9LKcfjniI5e6PHW5x9BUFMZivQA8wtaeYSAlhbGTGGFWGEbGYKybvPfAxEAe+Gu4iXjg9N+GWTUZaDZdqWCMo5eXCH/tpFpUlrK0k8tZUc9/GV8fP8709286xj2t/r73b8eJmYd4THihrY3Wkqo0lMZOpva1opDMGLLK0M8qmolmY1hnfZMkYFgYirLCW4nC00hS7lsZURYwL8A6iIYw5NZGnR5FUupkSktBbqEZwfJcyvxcG7Ho4LIkTUKM9ZRUVMYzFwuaoaZfeoLQkRmD9rv9hyTSRE5NDM7k5w54Rsa4ugA/uLZd33tda8loVBHHtTzcVlFQGku7ESGlICtq1e7CWLLKkGqNc56trCDQEms9SGjqAET9nIOy2jlB1qZiusphvy36mOOaOZ8ZxGPEfl+uPDd1gN/WB0zlPMl4DrSv50DPpxFaCk50EpRaorKWtX5GaSwqsKSNBlf72+QF+ACWmnB5vd4+3LgH5WjTpI6FNiWcPg2NGAhBi5DuaMSZcI5TJ9vMJyFYSelgfZQRCEkrrKcgNgO94zF6WmEI7CRNplRspreHB2kExt7odLXBeFDVeKtaVJZ+XhJrxYXekBONhHYaoRAMqgqZCwIh2SoKIqWYi0JipdgqC3DQLysWVESgJcOiopK1kRW+/pFCXHutO57iYFjSbIT7bo+Pm1c4zcwgHmPK0rJdlDS0Jg41jSiYfBm9gKI0IAUKz/qoojAVoZZsZyUVlk4Sc3qpwRMXVom8ZBRYmgGUFqIQouxge54PG0kdO5wHTi5BGMFCR5MPPbkwJCO4Yobcf6bJcrPJQiNgc5RhKkWvqEgiTaglzgv6RUUjqifnjY3hmL295gfVeWKMmyRtAiWRQb29LY0l1GqSLfbOM6gMhTMY6ymspawsrShkWFZs5wVZVZ8EPZ6XLbYpnMVU0EmDunZSqVrV2zsGZVlLzAlJ5QyxruPTY6GKUV5xYXvEfd4Th9emR4691WmDvTejfdQ9xplBPObEO0Pux/GbrDBUzuGso7CeSILWmmboyAvBdlZgsWin8coxKkpGQ0vlLe1EkBeewSb0y1rw4DjGEUPqmsOSeprZ4jw05kCVUFWS3JWc1inN+ZCq9FAGeG/Zzj3DkeDsUshCkqClpHSOVGsiVXefBFIS7hz400mEAHktzjsuhbrFLePYYBjjJo8PTIyvMY61UQa+7rQJlKx3BdYRCNjoFYSBZGQqNjYLtBBkpkIgsc4xLEuyzCHkFs4J8sJQrVu01ZxcimmFIf3CUEeRPY1Qs5VVeF+SNSz3yyajqiJRmsVmiPWetWFGMwyQiIkIrhICpcSuhI6ZakM9ykZxZhCPKcY4RpUhFJLSXzNbUaDwhccoSRJKQqHYzgo8AofDSMdykjAKDM9s9OlnBZv9LlkOgxzKrDYkLof1u/fybosOtSHX1PWHSsNoAIWFzqJhab7NXCcCp2nHimasKIwn0IKFufry2rBgLtZoWW8Vw1BRlpbcWrSTu5IIY698nPSaFvS9Gcb/X1mHMDCqDIGUeOcJd9o1R5VBI2jqgMpZ1ocFsamIpaJbFKz3MnpFxZlOg1FuebbfI/KK9UFOmiiyqqKhI0au5On1AruTKCmNRQeOK8OE0hqWGw1OzicUpcPLkG6e0QpjNkcZc6Hmci8nDgVpoNGBJA3qk0VmDFXp8JmncBYtJJ00mrxvXjBJ4ux97UfJQM4M4jFgvy/NOKuplUTvnHWLqt5OVdahhUAJuZMx9QhpccLR71fY0rOVF/SLgm53k80tcAJaKXQtbGzWPsIDwLPcnvDD3WA8PqENCFEb+KCAKIVGlLLQbiCUxBfQbGvaSUQcKJphyMaoYFiWnO00WGokQG3osp22R7WnwHmyXd4jBnsrxnD8/0oIEJAGmrKyrGc5YVE/rsPTrQxFaQi0ZmQLBj1B4SxPrXVRKFpxwNpwyHMbAy5e7RJFkryoEBJ6/QopDZFUmEDS7+e00wCLxFsI3AYu1JjSMHIF29s51huED0mbkuW4SVZUICXdocd5wXI7ZClJyEtTt4tqTc+VDHNDEiuycidT7RyhlKCunTyOaqnOzCAecfbrPphk+JSceBNQn4HxdQcFO0XEURQRqIr+qEI6SdJQtKOAvLLgHM3mHItLGcMczBCG/dq7EtRb5uNmDMeMO1M6S9COwadw7kRA2miglKIaeWRkWIjmkVJSWk8aKtKwQeUszbhOnoy9Pec8SVB7i9NJgxdb2Dz9OYqdzNWwqCbjIZDQiUIq61gb5oRa0h3kbOUVSVhfrqzjmStrPLXWZbkdkqiIC9t9Ni7Bah+WOjAYwkIbhIXtEorCkmq4NIBOWNEI68SZ89BODL3lK0RX4dIaNFqw0tLofsx60AWvmGs3iIKAs/Nz9DLB1W6GUIJz803SVhMEKClItCarDFIKQimJY73LEx53z+wt1dnbSXPYzAziEWe6fW+vcdRa0pQBZWnZymrTJYBOHE3iN855XO7JtGVOarojjVISqSEzFaHUnJqf5+lLXVZz6I/q+FSX4zu9LwTOCRh4qHIwIegQQtmkqEpOtJsQe6TVtJuaSGi6eUmvMDRDhXGw2stIooq5MKARBbsO0OlWSbj5JMr4gB/rWQZIjHHkxiIri3WeyllGhaFXGJbTiChUlJVhUDou94as9oecaKU8fXGD7bLPxmbB+hpcuFgS6ZLRCJ4panX0T6zvxICz/ddzsWR39f0Q1E6cRAHnroJ9wGDEgNRD5qG50WOx08KJConGVLUB1Ko2qlpKMmNoWo3DMyoq4lCjzbWTybiYfdw9M9syz7hlprdV09sN4WFkDA6Pt55BZZFCMB/Gk8Lafl7RHRWUrs5EbmX11joflpQyp9OaY6EVMOhXrHm4yJ0bN3AYJECrCcsBpCkkCcw3E1oLAdrFGDyx1yx2IsrCs20LQiXwzrExdEjpkRJ6Q4/1ri5014rcWtJ9vBq4ce/y3pa5YMc4VNahEZQ7cwkFgkaoSUKNANYHGVcHGaO84uLGBpuDnDwf8vjVTdZW646brIILw/pEMD0q4sUkxOzU7yeBJ8/X189QhyCaCzAse1y80iOcg5OdmFba4oNPjxiurBA1BIkMcR6UAOM97TACIDJ1D7gSYlIgvreu8W7PrJ4ZxGPAtJc4/QUaZzaTQKOEoDCWyjs8dX1iryzplxWBEEjlyYaOYVXQG4HF4rSjuznkcnfAxUt1MbajPrCOMwPgUh9OpaAbMB9L2s0AZzQEnlYcYEtIooDSeZJQEHhNFCoSKWjoax5hJOsxonhIQ71ret714od72RsnzI0lBoZlvUXuJBFZZiic5Wo/w1lYbAY8tdHj6laOwVBWhk9eWmerD09kcHGzfp0f3Lo1qbYXy8WdH7kJbhMWgJNA9fKchswZFmB8xom5U5xZkQSyFssdFRWNSIGHzSwnCTTeQ+p2qwSNudve4swgHhP2ijxAnWn2gslZtbCWdhTVWxLvGBUV/bykGQZoqZhrWFYHsL49oDAV2ki2Rp48g6yAlXm4OICNu/lCDwC184OGpoZIK3qVBT9CN+fYHBakYUAoFChPqkMCLQhFPTI0VAqHR0uJEKL2vI2hLetTxa447k3ED8ciC1IKwlBNSmsGRUWg6m2zFR6PJ9GKq6OM890ua90RTlRkxvLsxQ3e90S9++3e6TfwBRh7nZs7P9tPwkoD1oawvjnk0195ASdOUlaONAjYHhYY52nHAV5InHMkQUBhLInUSCX2jZHfLWYG8Zgx3Zw/UWcOJINhSVYaAi2pHIzKikFV1TWJ3jPMDf3MkBlD1JSUWwIjKipTF18XBayv3Z0B9wdNArR13aI339EgBT4zuPmQ0hbkPYWak+SuohMkKCFIlKayntxa8NTzlKWcbPHaOiQM1fPiuDej/DL+n71xyDTUJEqTWUNvVNIvS4x1XOxts9nNGJmcKxtbbPTh6efg0mG8ebfIRWB1WHcEXenBx5/NuTo4z4MnFknTiFiEqFDQzwPaScDlzNNp1gXvKy6l3Ywm5ThHoVZxZhCPOPudMccKzWOp+jw3XBlmCGBB13p9o7ICL0l0HfQuvOHiVo/eIMN6hykLtocZGpiTMJTQs/su4dihqQVgFwNwzhBplLh+AAAgAElEQVQFDebSgFgnJGHIiZMxZ9pzKC/pJAG9vKJXVjRCTSAUga6FX7XeSXpYSxrWh8o4K/xCB+z1NAbH9XilqWsAC2fJS8NWXrGd5/SGJc9udXn64iaVKzCl50NPwAi4coffs9uhovZah0ByFbaHoN0GcSPmzEITu2ERSvHwSovT7QbzSUw3KxmaiihXjIwhNde20DMPcca+XO/Amo4fVtahtWQ+DhFAHGq8rbd7FkteOvLSMRiWBCqg0TCUzvH0+jof/hgYV2/DLt61V3mwrADzCqIAtIB+Dql0BO2ATiMiiQOaOmIxiVkbFOTWsl1UzMchgZCkUVDXd2pJLy+JlCKU13qWx1lh4LqjAvZWBjhX95SXziF9XcM4MhVbowIhBN0sw1jYGGZ0+xmjPGeUwYefPdqGcC8ldSJGDaD6OMwv5mgcraanEWnWuhGpCkjCgPkkJLeWwlmGRZ0UjJyaFKLvlTE7LCM5M4hHmP1iVHsH1nvrQQsqt1O+IQTGe5SqC7et8oRKghRkZcZqf4S2huEIuu7aPOJ7hQ3q3mXh684U24XFBcvqlR6juZLlhTZrmzk6AJyiYSSdJGQhiXA73psMBBhHpOqY4ngswLjUKXZqchs8X4NwfL2o6p5ii0chEIBQdRtdL6u42B0yLAs2tgsqn5PnFR9/dpvVNdjMj5cxnMYCH/VwZh3SuCRQI5yPiaIRT16t+61P7HTDdKKIE3PJ5IQzHYa42Qz+QXIvHQv3JHsPtunxAd7uiJLKgKVmQl4YrPcMigLhYTCyDKqCNFKU1uCEQFSGnsnZ2KyLro+7tNdeHHVHisjhmSuwnMKoV1I5EIWgXRZko5K1rWSyfZ2L6iFSzkEaaSgNQgmaYTCJG+7VoNzvYJ3+fLSWE4Vq5TwDU5GVFi1hOy+52O9zYWMbJ6E72ubZ5wYUwAefO5hZ2UeBi8DZHqzFGTrISDSUOmE108wlGrysqyIcuNLvShDebAb/oLktgyiEWADeRd3ldR74Zu99d899Ph34Gep+ewv8hPf+XbfzvC9Vpj1G6TxOeFzp64xdqPECNkYZW4MKLz1RCBu5YWMjo5vl9LZ69KsRz1yxXNw+3rWG18MDF/pwSkMzgLAJkQCvIBSCqoLKeQpnWGk2cN5ivObKdkYz1TS8BgWBuFZI/ELbt70HqxL1ycqVtv5/73G+9hCtdayPCvr9ikvdIVJJtPIUVcHqVr34/iG+V4fBR3pwOoN2E8q8y8pKRlbkCC9YnksZFSGV81gcidbMuZCGDO6anuLteojfD/xn7/1bhRDfv3P9LXvuMwL+nvf+SSHEaeAvhRB/4L3fus3nfkky3R0hpaAVhxOtvEFe4q2g3dRc2cpYG464tNGnbpF1rPb6rK57qmHtHR5f1boXZhNYcTDXAGfg0mZdnN2IYX4+oVUmLCUpSaAwTrHSjCjMjhSWVoxKQxLXh8a0xzftAY6VaPYKtgZK4kztuafoWqfS1wX0C2mEUoJIQa+MyU3FU8+tstqtSGNY3zicmsLDpAf0Knh5F4SCUZ6jwhznHa2XnSWzhmFuiQJJK9gtlnE3kiu3axC/DviincvvBP6YPQbRe//xqcuXhBCrwDIwM4gHgNa1AnK/KLnSz5HKoZ3kam9IZSCJNZVxZHnJKPM8e7U2hPf67IiBg5UmLLQACcLB1iBjbaNHksTkVHQ3iro7IhQsJintsFaWdtYjVH0weuuxil3F8NNxrunf038LZJ2hrpzDWsd2WSF93S758avbGOPolxmPXxyw2QWfHd+Y4c3wJNBfh5MpPHQOcJLtQUkzLom1JlR1QkUJwbCo0FKSRPrYeYgnvPeXdy5fAU680J2FEK+jboT45G0+7z3BrZ4Jp+djjC8b4yYzVKJAkBu4uj0kKx3zc4qqr7i43mWQZ8zFda/zc1xr0bpXuQCklyGSoAJotQXSeKrcYqoRebOB1JIohLKALZET67qjQgd1R8lYYq0pg+cZwL2Xx5/lJNnlPIWr5bUipXDOcmF7RFYYnlvdJpmTrK5tsXEVtm0dvrjXtst7qaAeTVBC7ks28iFJX7PUikkCzaisKGVdX9vaEdcwxu3qDrrT3NAgCiH+E3WXzl5+aPqK994LIa67CxNCnAJ+GXij937fNkshxJuBNwOcPXv2Rks71owb/YGb6t8cDwYKRB1kzq3FGoff8X6kEkhRS4B5J0A4Noee7WFOEHi8EYyGtWd4rxvDMeeBeB2CCJz3tOcEMpZoIZEBuMqxteVpnKhIXUrlLYFUiJ1vZ2UdpbPIPR0q0/NNxlu8orIY62jEAd56nIBQSracAwF56TDGEWpBf9hne+T4+FMF6xau3rV36HDZADaG0P0knBsMCJ2kGUQ004CoKskKiQoES0m8cxLxDIqKJsGhGcUbGkTv/Zdd729CiKtCiFPe+8s7Bm/fRgchRAv4j8APee/f+wLP9XPAzwE8+uij92qIC2DSyD6+fDP3H8t8We/RCJwSmGpHfLOCojJsDDMqZ+kkEauDERfXN5BesNmrWF+Fyzd4nnuJEhgUUBUwHMDpZU8SD2lGDdY2Mh4606GVwMOLHfLSIJEY56i8RxcVSaAJpdo1y2SsUm2mJPOlrAuKC+8xxiGUIJaKsrKs9nMW04ChqXAervT69IclSlty/9IxhtNsAukmXJ7vcf99i/QGJf2sIpCSThJBwiQGOx5dAIdTj3i7W+Z3A28E3rrz+z/svYMQIgR+C/gl7/1v3ubz3VPcyocrpaARBxjjap05BBqBUYJ+XjLIKj6+us3VzW1UqDnRSSmrCoTEupxQwGj40vEOxzwFLAINQKSQ55aT8wHDyhBJTZTWRrCfO+YiQSuK2c4LKu9IgGYUPK/mcFwUP81Yim3Sj6tqT1IhMBZwgkCDQDHXDNjsWdYPuSk5ouSr5Xv5bv3bPCCuIICLfpGft/8Vv2X/OkOSQ1lHCRhbNwX0BgUm9jy02ME4j5OeQErUTv2nQuzywqcHe405SEN5uwbxrcBvCCG+E3gG+GYAIcSjwPd4779r57YvABaFEG/a+b83ee//6jaf+yXBOIbinJ9s1YZFVW+RvcA6h7WeMJCcWogpnWE0KukOMrobfZ67nFN4CEy9XT6ugq+3QwjMNeHsSoCvNHEc0dYBWnkurWd1zCqKGJR1F8+ossRGoaWkGQbXxgLsk0yB3TqHY9XyUCuc9yy3IsrKEWjB05tDhlVOEGg8dSz3sLhPrPEb4f9AixFNcW102ANilR8Qv8Z/p3+Tv13+EE/4Ox+qagPS1bHES2vrxHGTlXZCrCIiNLmzLEQBQD2yYSde7pyn2pGXmJ52eJCF27dlEL33G8CX7nP7Y8B37Vz+FeBXbud5XqoY4xiVhtgp+kWJkpJQyHrSmQe1M3wo0or1LGM4cjSDgLgtcUawGW8TBbD6HLWM/F1+PXeLq0DUg9WrFY05w3BQUMSGwaiJ0Zaq9DTaCuHrcZ2LcT3FMJByImQ6nczSWu4b95VS4MvaOAoPmbW1ZL9ydLOc9fWMS1tXGfZhMKpFKK6j3XqgtBjwm+GPsMQ2ep8wf0MUJL7gXeGP8ZXFW7nC4h1dzyr1yXlYgkHhy4xh30GzwssAZ+qTf5oGk+4gqOdgj5NW15sNfbvc69UXx4r9tmFpWH8J+kU9ZChNA2KpyEx90AHkxqKp79uKI4SXdIcDhrnBsyMO4F5a8cNpHPVB+MR5WN/yDIZ97Ah6VUYoBaOqYnNYYrFs5SXO+0k/8zTjE9Q4wz/NWPB0ZGpFIYsnEAIhRd2hIhTt+YBhD65uwlNrh2MMAf6ueg8dhvsawzFSQIOc/1o/L+p1R7gKVBnIKseKkK0qozKWYeYZmJKNLGc0qnZ9BmPjuLcY/iDjijODeESYHkY+fZvW9YHZjgLSpJ67HIYKIagnnZm6Qb4eZgHdLGdQlvSLkkGWUeW1kGjOvVuIfSME9Rd9RF2o3TcOlTry0tAdVcRaEWtNVTk2RwVX+hmbWU5WGqJAkUTXNlLXE4kdKxC14pDlNCErDENjKIzB+VoNuxmHiKSuCjisEhuJ4zv07xOLG5d8B8LyDepPSQ5hGncKRAmcWjlBs6EItSLWAfcvJMzHMUJA7mpVoPFY1jF3MrEyM4hHhP0G7lTWTeKGoVaTweVuZ/rbJza2eXZzSGUcaagIhaQ7zOllGcp7Al/39baA03f35d1VPLU3VgK5ga1uQbdXcGV1QFEUrHQSFtOQNAo422lw33yDRljHsMaxq6ww9LJy38cfB/rHv8NQEYYKjWArq7i8PWStl9MMIh5caVKKwwtfnGST5BYixwbFy8Wd1z5SwKXL8MzFK5gKRrlBaYFSkkFpSAJNc+czGBQVxrjn7aDuBDNxhyPEfhJf4zjJxEBahxN1rKsoHDYoGG4LenFVT8rLM0aZoTvY4vI2dDdqQ3DcVbBvF0k9PGu4DY0GrHQaCC2QVjOsKkIZ4HCcbKS0k2jXCWk8b3k8MH7MpJVvSsNvfL0VhZTScnU4ojCunmdjBd1sxNbg8OKHoah2prXcHB5BeAgNhJ66la9CULoSbxIUkqrylM6Cv1Z7OD4qDkP1ZuYhHlGmSwkmwWMlifRO76z3tOKQlbmUxVZMOwrYLDLW+yOGxQCnBL4CV9VjJl9q5TZ7qahjiYOyznAWlQErUVKy0csZlSXWejJrKEtbCzT4aych633dlzwV1hjXH45vk1LUsmOVJavqmTZZbjHOIZVgozekzDynlms1lMNgzXcIMDd9/5CKy/7OJlWgDhkoB5H2CAtOQmEqHHU8PDNm4hXanfd7vIMa14XeCWYG8S6x9wPdGzucPvDGZR1FZSmMZZCXrI1yhPLMBQEIuNQb8szVHr3BkLysqApHYYGw3p681A0i1IrOaQzzKWz1BvR7OVHqGY0cF7cHfGJti61RSa8sscaRhJok0jTiuvRGSLFr6iHs9urH3qTzHikE3nmkliylKQ8tzdFKEnzhaaX1NMC5Q3nNCX/iPo2btR9P+Pu5yPKdXRR1XWjchK0uVFIwPxcyGDmeXOszqkqsg2JHiDfSatdOKSvMJHR00MwM4l1gP4O31/PYm0mLglqs1DiHUpJmoFluJDjvWe3lbI4KAiVpRSFWKmJgNABf3d2hREeFBFgO4f5FWBvBE+eHDPIB3c2Kgc9BeLb6JaWvyI1huygZFtWk/tMLSAO9a67K2CuMdlSera+VsSOtJsXF7SjA4ZE+oHAV20B3Da6OOITURc3PmK+luIlZiiMf8a/N3zyEFUFEnVgJ2zAfRdzXaXNiPqKVKlpxRDsKaMT1tnmvyMN+x8dBMTOId4G9H+j09b2ex9g7dK7WPSyMJZQSIQWJ1lQ48rxCCWimIQ/cf5JFHTKMwBoYVS/NYuy9ZMCFEnoZ9DdhOwfjDFujPt54llsJ882QZhARSkU7CpEIstIwKCvywuxSdd47+2Mi2GsMq70RmTFouaPG3YzIfYlx0IxhfgFONeC+Q3rtH/Av56fMGxj56xvFkY/4Jfvl/Gf3mYeyphUB7RU4vdhifq5FbupxF71th3OO0rnnHQvjcqcoUHest3mWVLlL7FfUO111v/c+43hKVhkUgq285GyrSWkVIoRi29LLq3r+svDkG3Uw+ihOartb9IGqrPubF0MoS8d6d5tIBvRGBaWBfl7SSkKkEAhVn6hUaSnFNY9w74B12IlvBYJyYCm9J/EeCWxm9eyUza2SMi9p64h02ZImhueePLzX/ov2b3DRL/ED+tc4IbbweAQCh6BPyr+ovpF/577oUNayRK1PqTS00wRPHRM80U4ItGQxTehX1a4t8bgGNEXvK9x7UMwM4l1ivw90ejhRUdlJN4QSgtxaAilphPUQpEAoRlWFF7CcpiRaQheudnsMBjnWQdqAk9t1T+WMmo8N6taxlRhKY3AKZABKaE7Mw2IjQXoweEJffz5CCVJx7UAcZ533St075wkCxf/f3pvHWJbd932f31nu9tZau7pn6WGLmyibWjyW7T8I2RYJyQwgCUhsC7FgCogkJ4RhxIGCEOAfCWQDkSw4QQAHcBgKFmXANmWBkYhIBrg4CgHHtEhDEimPKFIcLtMzvdf+lrucc/LHfbf6VU11Vw2ra5u+H6BQb7l17+/devd7z/md37JMjJ6N+Je9xwCBgIr7BA/3d3fYfLC71z/6rPy7n/J/nk8VL/K98nXeqV5B4fm6v8bvhXfycC339FkHVovanSPaksaWwtUjxEgZyuD3NfZq4nHnxfC0VpxbQTwHHvcPnZ82N6LZdHczRuFCAAElntu7U1KjiIww2oDcVYiAieHBLRhvP2ws3lLTLBfoCpRW3FgekCYxReFJuhEPdidsGc31ocaJ4EpXZ67MMoaUeth0vnk+31PF+4DWdWpfUTiqEKjEI06RWkvcMaQTy2BoeOZexf3JWS94CX8Y3sofuree6VHn+bM9uLoILzw75Gq/i9ZCFCxaC1oJO5M6TbWYtWFoejXPuyxOK/ym9SGeA0c5hZv33ayc1HxMXLOwsptXbIwn3NvNIQhZF6Z5xfb2iMhYEgGl4N4Zf7aLzmuAFrB9uLq0wHAxxU2FJBJWsgQv4IPHqLofipb6f9SsbBaFo3R+30rnwR4rUN/MdsuSjXFB8LDQi8mMweeaTj9hsNBhZQ2+p8MZ1Zi5GLwAXF+FtZWUfrcLDhIVcW05oRtbBCEoiKyi9J5JUb1uZf80aUeI58RRdzdjFDRhHFVgVNTBskYrVGCWK6vpZwaHpyrgwWjEN+7vYhRMc5j4s1vJvCxooAwwegDFWsHOuqbXifAe7o0muDKw2E3IvSN4KMRhtMKouop2EOoafXZ/1ZsmHKRBqTo42zmPSF2VSIBOR5NXEeOtCdsFdPqwNoJvnMO5OA92gFfvwGChzr5a6KUspJZBnLA5Lnl2EGPUw9avjkAKr/Ovt1Pmp5BGFJUWOpFFQn2hjYqSvHC1EFYeFRS9zLK20GO8O6GQnDt3PIOYC7DEHHhR/oSf0p/hOXWXndDhE+49/Bv/g5Tn8PUbU4chZSPquEIt2Fhzd2dKPFKoWCFjxUIWk1nDqKroq2ivBFjjz2qYH7U0I3uY9WR2Di+QakWlhWGI6Scx37o7pQiOxQySFDbvwRuInb6UDIDnLFx7Fq4OLNeWFijLQFVVTCtDZgydoSUxht28JLaaTlKn7jXnu3FVAKc2ZW4F8Zx5VJvL5kLLS0caG6xWjMuKUAVGZUU/jkE5Si84cWyNcoLXdFNLnjscBVvnLIZDdvhY9Eu8VV4loUDPqq28qP6E/4lf5QPFh/hyuHGmNlnqUWIkEIqKZMkSnOLZlZRBkqKVIrF1PGcR6gKvVil2i5LY+3qErvYXLYU6TnS+pQCAUYpEawpfe3Ijq1jrdtiZFCSpZjDIqHLH5vP3+ebLb+6eKu9YgOECLCWGTq+LaE2eO0oCo7yk9J6FJGEnL0DVsZwHbzwHy36dBq0P8Rx5VIB2U8Shqjy5c3s1+CJR4MFooZtoEhOhQuD+zpTNnYLK56xPpqxPClR4RD+HM8JS8a+if8g75Vt0JN8TQ4CuTFmUXf5l9A+5Lmfbay6lHq1UATYLxzSfMJmUrI8LdvOKinoRpQweK/WqvlJ1vxqr9tdBbGLiDraCUEr2Mlx6SR3CkxlDCNBNDdcXe1zJOsQqYXNScGXB8u4FeLepMzjebFwHXngWbqz1WVkdsLzQ51pvwMpSxlo3ZZBGszjEio1xQaJeH2d4msHY87QjxHNkPsxm/vnD1cr6IszLus1oCDCtKkbTCq88lQtMS8erG7vsTKZoFVh/UDDsgo6gHJ3fZ/sR9QWelbvE8ug11IScv69/g/+2+rtnZtciMExh7Qos9yJwFtOBSGkKV7K5nqMCyJrwTK9LECi9x8ziEg9yMH50XhT3AotnzetTY3DWU3U8sTEsdhMKCiI9oJ9u8fLNbdQd2Ji8eUKl3mXg6nVYW15k0MkgKK4PByx1I+5uF4wLz2o/YSlNMFphjWBmlccPFuE9bTGEVhDPhYPT5IMXU+k8PtRTBKsUuXOMi4peZKm859bWmH5iiWJFGius0jhX8c3X7vPKbZj24JWN83VL/az5bbry+Dm7kcCP6i/QqSZn0s9DgKVFGGiYFLCxXWBVRbezyqgqUUoYdixGFFc62d4oZXOS75VgQ79+v4eFgcxPpzNj9qbfk8rhq6bQqSUOMa4s0Tam01U8qz0LY9i4dbkrnBvg7cC736lx3uFyxy4lnSSmk2p6ScIgq4sZD9IIUULpPcM4rnuNl+eTfd8K4hlzWDZKczE1U2M7i2NrLqpYP8yNlSDYSKEN3N3MeTAZUYSKgMdXECdwd/38m55fl+P1k6vQrMk6Xw/PnLJFtf/w7notNFkfEsm5/kKfYSeiF8WEABZNGtWBwqNxxUIS048jypkfsHQe7eXQKd3B581UGgtmVuS0rvNn2BiXRBYSozFxxPJCSuUqqtzxrbvbDKlvaIbLJYwWSIAbCVx/Hlav9Ih8RJqlXB2kLPWy+mYza0TvfCBWGjMLM9NGTtVHeBStIJ4x89Pk+ZFhk5oUVQrRgqJ+La8c3dgSW40EGBUVwQe8F5R1bNyacmdrnc2dEeu78NrWxah9WB02lDoEhT+z1eaCepV5IYXFDBZWDPlowuZuQbJg0EGRO0+mPKOyQishd3XDKI1QeE+EwmngGA3U56uzNAK5lCVMqookdvSs5W3XFpiUBdPKM4x7lNmUhSLnB96eM5nCqIQv3roc4VN96rS8YReurkBRwu6u5+pyzI3VPoudlOU0YSFNKIOHAErX+d+p1AuHs+SgY/UqPw1aQTwHDgsdUEpIjK4boIuqBbKsKL2jKBW7eclCEtNJNKntsJ5PoBKIKkyk2B7XxRwWNGy684/i+Jx7Nz+m/z+MPD5XZkzCK+H0y001FMBkAm4RiqKiEMXmaJcrg4xuFrPWS+jEESLQMXav5FewggkQRfrQXOZH0fgRm3AcYxShgr6NiKxmpRuzPbWkFha7ETfvj8FrwqLj1vomslnwfX14bbsuUHFRA+2/L4XlJbAxdFO4vnSF7iDmuaU+kViu9BN8qCtil97vjQL1zL96Hv7Cw2gF8Rw52C4g+EDpPVLUjnwXPLe2Jix2HXe3J4zyktc2xjhVsTtyfPX2a2ztFuyOpzy4D3kFN90FCD0EPurez1/Tv4fh8LL7AJNg+Wj1fsIZBTtYYIH6gk0Vs4WNjIV+j1gbtAoM04TCOSalJ4R6imt1HZRt7ENRO64Ylu7hDaGppp0Zg4qE9dGUKgjLHUtqLQtpQuWE2CjWJzll6emnJeXVgnfmcO/OhJfvw1emF6M/ziqwZOuMqH4Prj+TkSUdep2ItWGHd63WNzploKNtnROuDXrmFoK6SpANtTg256dJ1WtHiE8pTX6s02CcMK4qcufQwLT0bIwmfOv+iGeXUsYhp5zAtzbvMx6X5NWU127D7dHFqmzzUniBj1T/GT9rfptMXi+Kk2B5KVznV9z7z8ymptFUNoVxAX3lWBwOuDbMSKyidMJ2keMqiGYi6ENgOy9ITX2pzOfTHnm8uVqJTZB9U+S3n0YM0xhPXVD23nhK31puLPS4F1lWypLlbsr6aEJeBgo/RumYKNvkRlWvROcb8B/PYS7dBdaA5SuwMoSVfozDcHVpkbeuDskLjzUWo2G3dPRDhDaKRGlsVLt+jKlnQRLYmyY3YTXHudmcFq0gXhCMUfjCYSONcQpVgIjw/EJKRSCNxuzkOdoZ7hWb3HztAX/8lUDahZe26wv9ovG/ur/Oqyzz8+bXychnoxpB4/h195f5n6v/8kyzVXJgCCwMQSJIvWGUl7xyf4eVrIdEOQuJxQGdJCFQh8wYqUc0pfOPdPg/rhxVM70+2FIzSQzLKqV0nmEcZumYiu1pySCOsFpzpZ/O8nkX+BK3SeOYJC2ZjCCvJvBHE9IU7t2vF9K2nvA5G1IXcy2pF9iXE1ga1sKxuqJZHfZ49wvXan+4iehEESt9Q8ATEJRXLGYxkdV7NSPRQlE4xmW1L7bzsCrkZ00riOfI/EW0V3HZw6goeW1rQuEqFrsxVoRnF7u8fHubm6MN7txa59ZrgZu+bsB+EcWw4dfdX+Ffux/iRfkqa7LOLimf99/NhORc7KmAQa9ugbl2dZFelpJow7XlhKIUUNAxhsQYqsrTie3e/8g9IhSk8Sk+qnrR/OvGqH2iGkUaClBW2Bzn7JQF48rRTyzDNCGvSgJCXjjetrbMzXiHnk4Y9aZs7EQsrU7oZ7CyCkt34PaD2We0sFvWPtO71O6Cx31PlqkFb51aBFc1dIfQMXXkwsiByuEdN/rEqeL+1oRhaummXca5Y2WQcaWb4BFirUiNxShhMVMkszauZVnfUMzM/TB/Hk6zpNcboRXEc2IvpGbOmex93cjIaMVbFrsUznFnd8SfbkyYMuWb65u8fOsuX/sq3PFPfjRwWgQUXwjvPHfH1xp12XqvQFsIXmGCIjWGQZpAGtCiyYzGiuJBMaVTWLKszqk9+L9qRjXz9REP4zCRbGgWz7qxZZjFFEVdLr8TR0TaURiN0QXOWhDPlW4H7x33RpZYLG9/dor3QhIZ3rLm+MbtdXa3Ic1q395oAm/NIXcQCrAWBinc3YHUQhTBKIcbN2KmGzkv3wYVwVuuCf04ZnNSkqWK5RyqSPHM1UWsGNJ4xFp/wELXEhtLPOurrEWoQiAQKAMkovb8qM35m785zNeTPItMlKNoBfGcmO8zO51WRJFGi7BTVRTOkRnD/d2cr97a5ubmBnc3dpiORzxYhy1f38lb3hhrGXRj6HeFLIoI3jMqSxa6CeOi5EonI68c1Uy5LZoyPKyU/ajRzElGNUrV2UjN34sWljtpXbRDK7paExvNuCrZHlcEcfSTGJSw2k1IIs3X7zzAaMNyt0Ov36WYVlSVI5SenVCxkFju3NvGiyOOU7qpYheH/M8AACAASURBVGG9YLgQ4aYeZTQLvQ7F0JF11kljy3c9s8bKMOWb97aItSWJBfGGt6312BpXvPu5JfpR3ct6VJRYqdtaDJOY0tcNurwPez1oms966Oc/51HhPK0gngEH/UvNqEAjjCcl98c5vcRglGI7L9galUyrEqOENNUMibm7vsXLt+Arm2/uIgCnhQAhgI8hjRWriwu889oSZSXEGja2S/pphdGKrrFkqcVotW+VGB7+L+crr5zkYm7yng9SEYhU3fQ+5BVdiTDdeiGi8oFpHljsWt5xZUhkatGMjWJ9ZHHdwGha0I8jRrkDCSgVE0WKSZ5T5prveqHLQHe4vbODEujGCaajWOl3WEo7PLeUMS4c5SAwSCMWOglGQWosipzVLCWL6xFhWXnsrJCrMYpIvbEQmosihtAK4qmz18x8LrvBGEXmzd50q5cYIl23BHAV9FPNnbtjRHmMFra2S3byCXdbMfyOWKZeYc5SGGZAqcA5unHEFMfGpCCOPDp0EamrNitV/7+284LU15fJ3vTYy7HjEI+iGT0108b5aWXzfWkyXqqpZ6ss6caGFxY7xNYgAfQshKWqAkZrClehg+KZhYzYGHaKgiuDjLLylJVjfTxltdslTuqpdr9jWUxjtBF00HQSgxIhtnWW1LVBZxYGFuhay2KW7Bv5oUAhRHp/u9DjhCVdJDGEVhBPnb2QmrkLqOmgVzqPVsIgjRlPS1wVQHlSa0Ac97cLxtMxf/TybV75Fnz7vD/MJcXPfgoPlHBvXDKsPEXpMVYRl5q+tXSTiKryjKqKaFpf3KX3e21IoQ4NOW4c4pF2PcZ/Nt9PxIWA1YpBFpOauq9IE7ZSOs8gjsmdAwO9xNaP/QQXYBBHXOt1GBUlDyY5m9Oc1V6HpU5Mag3fkF16iaYTWe5uF3QSjwrC3e0pq72E3iAiSyxb45xpVZEaU+d0w17bVYPCaEUamdcVu4DDR4AXZRHlICcSRBFZBD5OXRn8m8DfCCEc2gZYRPrAS8BvhhDOrrzJBeDgBeR9wGiFpq6gMs0rbo8meO/ZmhTc2ZgyLTyVFLy6vkHlYLM6izWJwF+Qr/CT+t+yJut8M6zxz937eCm8cOpHPk16wHIfnl2GKAYdW9YW+hR4+ipm2BEiYygrt5fHHKS+kLvW7vW0medxF/FxRz7H8Z/Np3o2oTpNNaTmvbgT73vN+0Avjqi8J7N2LyXOKMVCElF4Txbb2TRYUfmANXVV8CyylJWrU+sURLruDbOdF0xLT2orjFPESu8Fqw9V/LqR4VGVrS+a77DhpCPEDwGfDSH8ooh8aPb8f3jEtv8A+NwJj3dpORhe06SDSYCpqwNUi8oTW00InrjQ7G5NGY8L8l047UpeMQX/zP4jvld9nZQcJfDnw5/w4/rf8TvuL/DfV3/nzDJKniQW6Cfw3DVIOgqZwHK3z9XFLsEJcapIlYYQWJ+UJFVFZh5WJzf6oRgdZ1TzRkc+xxWE+RFXXjqqmW/T6FqcmkwP5+o0uIGJ99kDEFnNoBNTFI5itlg07CW1X7LyRJnGVR6xhhuLPbpptHe8YRrjk0BizL4sk/n4ysM+++POw0UTQzh5gdgfBz42e/wx4CcO20hE/hxwBfjUCY936WkKXTarylD3R1nK4rrTWFnxyvqIu9sjdrcmqDjwYOv0V5V/2fxTfkB9jY7UYghgxJNJwfv17/H39CdO2YInT5e6o12Zz0JQdjxj71kcdhkmEblz7EwLIqVY6qasdmK6UQSzGoje11kk86uk81Pbw5oeHdzmKA7u46h97j2WWdHaudcPFqtt/JCxrRddmmrfSWLoxnZfoHjhPcEFvECkFP1OXHd4nO2rl9QLK2ls9mIpD37OR712mTipIF4JIdyaPb5NLXr7EBEF/GPg54/amYj8nIh8UUS+eO/eRU1jPxnz05rS1V3FplVFYgwheF7dGnN/a8KoHHFrfcTtV2Fcnq5Nq2zwI/o/ksjhB8ok52fM7xBxyoY8YbrUuctRB9JY04kVi92MQWrxQTEuSorK4whMq4rYGIZpzGJWFyutKk/p/V53PXh9/vmjBOw4PKpi+lH7NKYundWI0/w2TXzrfFgX1OlxzciuybiZ318WGbLMkkWGJDF74taUozsYUP6oz3nZBPAgR06ZReQz1DGtB/nw/JMQQhCRw9xcHwR+J4RwU+TxJyuE8BHgIwAvvvjiRchff6I0TvDmLm61YlpU7OYViS5JIk3PRoy7BeM84DUEf/otxN+jvkyFIn7MNgHhe+XrdYD1JSGmbnn5zBAWhwOUE6LIsj2puGW2cUUgXlD0Isu4cGxPc67EHYxRTKcVooWusntiMM+T8IEd3Mcb2efjFioq9zB2slm1Pqz+5jzzERDzxzjYy+TNzpGCGEJ476PeE5E7InI1hHBLRK5yeBuPvwS8R0Q+SH3TjkRkN4Twoe/Y6kvI/N1/fuUw1hojwvq0QAGDzFL6lGmVsxBbqk6JP+UCh5GUyJFLNoKVM1nZeSIMqW8ksYKqgtFOzvJin2E3pSwgs5a4LyxEad1i1Di28opsWtCJLIX3JEofuqDS8CQE4nFZLN/JvuanzQf3d1zf5vyi0ONE+iKGzZyUky6qfBL4APCLs9+/dXCDEMLfah6LyE8DLz5tYgj7K58oJeChKByihWeHXXbzgu1piVWaOzu77IwdpS/ZPgP/4Zf9W47cJqLkq/65U7bkybEKDBZhoVMvpkRGkUQRgzihjCqWspTlToLVmqlzDKKYONN0s2if/606RiHYi8TjFjCOK4aH9Yc5uA2cXm/k8+Sk/+lfBN4nIl8D3jt7joi8KCIfPalxl5HD/D/zlM4zyStG05KNac60qPA+cHc05c7uhNe2d9namlDlUyrAm7oS8WnyR+EGN8MKLhz+xS6C5nP+3dxncMqWPBl6wNIVWFoANIiGJEsoqwqMp5jCg3HO+rioK5CHQJA6wNn7UKfNqYdVzKvq8UVuLwvHDgV6zKLQ/Kr1Rcg9ftKcaIQYQngA/PAhr38R+JlDXv9V4FdPcsyLzFEhF80osdnWFnW7AFd5+kkd/zWJLEuDLqWqyCcl096YnRGnXkP+vy7/Pp+I/keyMCWa65Q3DZb7DPhQ+bOna8ATYg1Y6tQ/RurFlIV0QBoZdiclqTFcvZrUpfxLhyOQqLpRemw1O5Oi7pBn60WLLDKXaoT4JDhOXOSbTQgb2kyVJ8hxA20b4XQhIFVgpygJBHwQlrsJkRZe3RgjsQILz1+B8Cp85RT7ArwcrvEj+S/xd8z/zV/X/y8dJmzQ49eq9/HP3F9j+xJ0DDbUJawWu5Bk0O90WFkYMOxGDG3Kq4xITF2QIIsssTGI1DUPC+8hr5g6R2L0/sKuLft4s4ohtIL4xHncVGPeJyOBuhm6UiRW471ikAZccGyNNFEEia0v2CyFLAF2T9f2OyzyC9Xf5heqv029enJ5vvhq9vP8IrxlRbMbHFcWB8SRZWuzorMSuHFlwGIWkReeka7IrEYphQ8BAbRR9KgLO3gf2M1LuthWFJ8iWkE8Aw5Opb2vfVbdyO75qrbzgklVQRDKUOKdYnkwJIkiQnBM8ges7h6+jH86XB4xjKjDFzJgsQdxN2K8VVFWOUZqQSuDo6oirFL0OobdqmI69ix36lL+ezF8zKXFqVYInzZaQTwDHjWVbtKtfAgkWtOPI0LwTF2MRjPILLd24OZrmwwyzbOZ4+5FLo99DlwB+gLDIUQW4g6Ijlhd1OgQ000NVxczeiYhNgqjNYkxJNYQQqD0gUlZ1a1G5WFtwsbf+zTF4LW0gnhmHJbi1EzFRmVZh3koYTv3uBKUwDh3GBS9ToKOPPd2t/meV+F2dTF6L58Xirp6jQBrEbzwHHS6mmeWFok6Ea4ITAuHaIVGYXyEKIitJRBAUTdINxoLdGK7N2qf7++hVN0fez47pRXGNzetIJ4DTWA2s3AOR4BQ+wyNqpvy7BYF49sVRDFLzyRU1QKjccmVQY75mufB5Jw/xDnigbdQC2PSq3uImChGGYMvhJVeihfFchZTEuh3NF0bY7UQ/KxxlFYo6uKsSslewY2mrH0+658yHxXwZoy7a9lPK4jngFKCVLUQWq3oRjMnflESGY2S2q84zGJ28wIJiigJXL+6yvrOBmK3eW4Ctzj/hvRniaFe6nlB4C1XAQ2dFFQMmSji2OI8JFHESj9mWgYm0wrvoNSece6wVtOTiFjrvRJfQF3Xzz5Mb5svktD8bsXwzU8riOdAMz3bq3YT6qoqsdakcd3tzQus9FJWOikb4yk7RUEvigj9Ie946xg3rri5Dt+6Wwvj08KzwLUrgIK0C88sDSjyiqSTMUgSFroRFkMkhkkoudrLuDroEHzggQ/EWtX9P3Td/Q1gNC1rX6F6WKX6zVi4oOVoWkE8B+ZHG96HfdOyphrywEWEGIIPiAYZC0Yp0l1L8pbn+Pq3b2O3JiwAXQV3L1EXvjdKxGzxxNT9lK2pu8etpAliNcudHs+vdhkmKcEFppUnihTXsy69KIIAu87RsZpeHO3djPZS87QilodieJJ0vdbPeLlpBfGc2Fdw9EDBzaryFMEjHiKjWUoSqiowSC2xtXRzw+CtKQsLt/hSdwO2oDOCr45gwqWpv/BYrlE3R98BVoDnVmBtoe413Inh+bUF0jSlYxMirVhIMzJtmODQIWCVoR9HJMZQBk+KJtGaLLHkpdsLd2rO/7wYjouKjDeeodL6GS8/rSCeIwf9Uk2JJhcCGkFpwc+KdDo8HRXxTN/w6hZ0YkMSP8PmTkHR9/S2J3Q2YDqB+6O6QfllnUobYDGGtT6EFKZTWB3CcDFj2QlxPyJVHQZJwrNLGc4JqTVERhFZTTcYEq24N8oxOmc5S8mMYeIcKq/QBxZOlN1fGzDxep8YPsmWAC0Xm1YQLxjzJZyqyjMpq7qidpLUdfqKijI4XOkZTxx/5plnSTLh3kbOxu4OD8Yjtu9OeDAFbsEGp54G/UT5LurpsLJQmroXSkhBpQpfOHxsiKoYEk+3o6kKYVJUZLHGVYbVQUxV1eXynQQSbUij+muuROr2nrOm8k340zyNf/dgId8n3RKg5WLSCuI5crA72cFsFhdC7TfUCpUIo2lJRWAxi5nkjsiqugubUmhGDNOEBdfhtt1hNZ+S9caMd8BVsPsA/sjXub7nVfe6Qy3OHWBM7RtMgO9ZhtfuQ8/CyhW4/lzG7u6Y3AnLWYesG6NEYW2EVZqlXkwIimudHkqEKFZkNgICS0nK1jQnBMi0pZ/UfUG2pgWDJMLAXo3Dxnc7f95PUrS15fLTCuI5ctiUef5CPBj60UksVin6ccQDPWVaajJjMFa4LsJ2mTOcxmTErE9G5KVnZHKCCuQLkM7y/qYVbOzWgvQqtd/xNBDquoSKevqeUa8S9xdgMgEbYHEZri4JaSfQiSDOLKsLA66uLDGdTplMApNJwWJ3yI0rXbpJzGRS15HspRGd2KCCUHnPtPIUzjFxjoGO6MSWJKm/4gOiOoVvrkT/Yed9/vVHPW9589IK4jlz3AuxGU2KFuKgWemkaGofY145iEGLYimFd14Zcmd3wlfSlG7H8q3XNrm7uY3VI7LIgnbcueeJU7i+DdMC8gJGUwhVXZDWU8c45tTCuQUMZr9j6pGd5WHWSGf2eDz73QW0hWECcQrfm4ELkCZ1Wa7tHCQHnYDTlu9ai3nbjVVefmWd0W5FUCWxjrh2NWJgMxa7FpwlMoFCwaBj8B52phWREbQo+qmlm0bILAWvmfrCw9L4831F5keFLS3QCuKlYb7idl66va5rW9OC4AOd2BIbTQh10YgHZsJC0iGLhbdeW+HKYpeNcUESa4ITVoYbbO9WLD+f4AVeu7eNUiXiFZvjkqqC8QhyB0ZDFsPGDlQFrK7CYkeYErh9exYGE0E/he0R7IxBR1CN6tzirAO9nsY4wWmPJWLQARMLsc3oJRHGGPpRgijDoJ8gQVHi6JISiaZrE8ZUJBJBVhKJIYk0/chShUDwgczWxTLSyDAuK6SqBbB8RI+RVghbDtIK4iVi/gJuWpkuwF5/lrx0FN6xPp2S58LKYr0ykfUrbiz1WR9PccrhCuHtVwe8cn+XThRRmYLV3oAyOCZ5yVpesj0eEdDEVkjjBGOFcV6gVCA1GcqAKz3PLIyJrTB1CqlKVhbBaMd47IjSut9xrGOgjqeMVUJnYPHOk08gTjT9NGJrVDEuKxZ6GdcWuhSFI4stkVUY0URG0YtTKhewEhHCLEZTCRahlIf9aoxRZJi9YOtYPWzd0Ipgy+NoBfGS4mb9gpPE7OtxEUkdfNyP6gDke6MxZRERR4puFbE1LdA2gBe++9oiN7d2uHfb01+EG70lOqmiKD23tsaMy4JBmjAuKqZ5RWQiOjamDBXDLGFcFCz1M1wuuKhkMoEsUlwbdLi1PWZ3WjAqSowDpz2hUKyspIymHkrD1UXDWr9LN4nYmkyxRrPUyehHEbd3Jix1IjJrESVIELQWtFIM4ojI1P7VIHXanarqUXMTY2i1wqj9C1SK/S1E21Fiy0FaQbxkKFUXJGgez/+OraZ0dZZF10RM8opBEpNbR9dGZAPLUiemcI57o5xYGb5nbZkr3RFWIkQCVinSWJikjl4SMYhjfNfzYDQlm0ZoAa0i+pmBSlheiAgV5M7je4F+FIEEloNnrdNlHHK0Eu5sjNmVCqMMaYDnnsnoJhaNJnclo9wR5YFhP+JKL61FXsHWtGSxG+GCpyiFzCq0Vq/rM2y02tfjw4UAfm7hRLcrxy1H0wriJeRRF/LBZuJWK6QQelG94tpkZxijGCQxjkBROVY6XTwemY2gMmMICiJR9OKIvHLEViMBKufZLR2dSOOBKFgqU7GzW7I6SDBa2MkrglcsDSzFhuPbd3eYlCXPLGe8Y3mR6dCz2o3Jq4AxMNqoWMpi+qml8sJWXpIllo7VjMqKQRSjtLAzKbFG74lbXjrS2NRhS7oWxrL09Q3Ds1dRqKlk87gFrJYWaAXxUnNYBsXBiz62mnTWKKmqPNPKEflAllomeYWJFM55RAlF6epcaqXoOosLgal3WK3o2YjUGpQIu0XBpPRc69fbVE6zaQvGRUWhfF2OXwmJiXhh1XBlMWFzt2AxS1nppezmBVsThzKegUlRZkpsNb0kJjOG0nsmVYUDYqVJIoMEmFpHouteyVXlKb3HzgQvthqLoqQuqWaMeljYdbaNOhBu09JykFYQLylH+cGa99XcyMgYRVQpCu8xXu2tWpfeE2YhPamtvxJZbKm8hwBpZIhmIzOonxel4/5oglaaNBaWOymjsqQKnqudDp3EECnN2FWMJo4r/Q79xNIxlmnlGGagUYgSltJkr2R/ZDQ6qLpZfOX2+s64EEiURmY+QWMUma+F3s1S8JoR8kEacYQ3Zy/hlidHK4iXlKP8YIcFdgMkiUEVbq99gTWKrrL7qkTnZT1FjtHks1FjI7CjvJwVV4WpCyzHGms0w44jKw2T0pEmmkEck6UWtzWiCgEJYJXGh0CqDd3YAtQ1IK2idIFJVRGAQEAFYTPP8R5Up670c7AajQsBw+v7A5fOo31d9PVgrGErhi2PoxXES8xRF/bB95vV6KYf/cGFhvntlH0okNNpRRE8idZ0YouWWmwWMksaWXaLAi2Ka/2Uyns2pgW3RxNWQ8AFuNJN6CYRsdL1foxGtKBFGJoYiPemwBJgKy8QgdQautbSzaI9Qa7LezmSmZ17K8hzYTXay/4p8xs4Zy1PN60gPiXMlxqbF8KqWXTwD8voN9u72cguD7VQNb47pQRXOrpRRPCBqgokVqONItEGkTqDJokMU+8QrwihnrqWhUdbhYSHFcOB2dQ3kCamHoEqIa8cRte+zyb/2KmAme2riTM82PekbQzV8p3SCuJTQjPFbh43o8X5XiLKh/0BzB5MojHVw3i+3aLEitrL+Cidp5tYUmv2fHi9LKIoHFGk6VaWIngiqae8UdB7x2vIS1fHOc58mqLrnifzC0FNNet5oTs4VZ7/nK0YtnwntIL4lDHvX9MirxOVJuuleTw/FQX2ehU3lXhiVS+2uFndRu8D02nFqKq7vWirSJwguv77ZrrtZn5KpaSeBntHHPS+BRClhCjSh5b2f9xIsBXDlu+UVhCfIvaNnppQlLmG9IdV32mEp/HLdRK7b/vmdyNik7yiDJ6OMSRJ3R/GJPVUG2r/ZSOqzahTtOz5FRu/YOn8nmAerFzdjGKlasWv5cnSCuJTxnwIzuNGV/NT6sbf9zi/XCNuaWyIZ2Ex8+1WG/Gdzy5p9me1Irbx3r7mS3QdZK/qT8W+qXRLy5PgRN8kEVkUkU+LyNdmvxcesd3zIvIpEfljEXlJRF44yXFbngyPErdGdOBhEYnD/HWP+pt9KXKzv2uEcK8Iq96fZzz/Xmz1Xr/kZt/zNjc2ZdEb73vS0vI4Tvpt+hDw2RDC24DPzp4fxq8BvxxC+G7gB4G7JzxuyylyUMDmfx/1N40wzotY8/yw4qzz4ji/r3kxPLi/+VFuS8uT5KTfqB8HPjZ7/DHgJw5uICLvAkwI4dMAIYTdEML4hMdtOQMeN3VtmH9/z984lx2zV3nGqEeOMh83Uj1MMFtaTouTCuKVEELT3O02dfvcg7wd2BSRT4jI74vIL4uIPuFxW06Z4wjR/OhtXgwPjtyOO8p81L5bMWw5K45cVBGRzwBrh7z14fknIYQgIocNJwzwHuD7gW8DHwd+GviVQ471c8DPATz//PNHmdZyyhxrmjy3Kt2sRM8Xaj3JsbVvC7q2nC1HCmII4b2Pek9E7ojI1RDCLRG5yuG+wZvAH4QQXp79zW8Cf5FDBDGE8BHgIwAvvvjim6Hf+pueg3GBVJ68dJTe08V+x6LYZpy0nAcnnTJ/EvjA7PEHgN86ZJsvAEMRWZk9/6vASyc8bssFY95XmMZ18YaTjhCP4zs8ysfZ0vJGOKkg/iLwPhH5GvDe2XNE5EUR+ShACMEBPw98VkS+TN2d8v884XFbLiDzvsInsQJ8HDE8zsJPS8txOVFgdgjhAfDDh7z+ReBn5p5/Gnj3SY7Vcr5cxMWNNm+55UnTBnK1HMlFHom1YtjyJGkF8SnnOCLXxgK2PC20gvgU80ZGfq0YtjwNtMUdnmJaH1xLy37aEeJTTiuGLS0PaQWxpaWlZUYriC0tLS0zWkFsaWlpmdEKYktLS8uMVhBbLjUXMVi85fLSCmLLpeUiZ9C0XE7aOMSWS0sbR9nypGlHiC2XmlYMW54krSC2tLS0zGgFsaWlpWVGK4gtLS0tM1pBbGlpaZnRCmJLS0vLjFYQW1paWma0gtjS0tIyoxXElpaWlhmtILa0tLTMaAWxpaWlZYaEcDET40XkHvCtuZeWgfvnZM5xueg2tvadjNa+k3FR7LseQlg57I0LK4gHEZEvhhBePG87HsdFt7G172S09p2Mi24ftFPmlpaWlj1aQWxpaWmZcZkE8SPnbcAxuOg2tvadjNa+k3HR7bs8PsSWlpaW0+YyjRBbWlpaTpULK4gisiginxaRr81+Lzxiu+dF5FMi8sci8pKIvHDRbJxt2xeRmyLyTy6SfSLyfSLy70XkP4nIl0Tkb56yTT8qIn8iIn8qIh865P1YRD4+e/8/nOX/85j2/Xez79mXROSzInL9LO07jo1z2/3nIhJE5ExXdo9jn4j8jdl5/E8i8i/O0r7HEkK4kD/APwI+NHv8IeCXHrHd7wLvmz3uAtlFs3H2/v8G/Avgn1wk+4C3A2+bPb4G3AKGp2SPBr4O3AAi4A+Bdx3Y5oPAP509/kng42d4vo5j319pvmPAf3OW9h3Xxtl2PeBzwOeBFy+SfcDbgN8HFmbPV8/yHD7u58KOEIEfBz42e/wx4CcObiAi7wJMCOHTACGE3RDC+OxMPNpGABH5c8AV4FNnZFfDkfaFEL4aQvja7PFrwF3g0KDVJ8APAn8aQng5hFAA/2pm46Ns/g3gh0XkrBqnHGlfCOH/mfuOfR549oxsO7aNM/4B8EvA9CyN43j2/Szwv4cQNgBCCHfP2MZHcpEF8UoI4dbs8W1qQTnI24FNEfmEiPy+iPyyiOizM/FoG0VEAf8Y+PkztKvhOOdwDxH5Qeq7+tdPyZ5ngFfmnt+cvXboNiGECtgClk7JnoMcx755/ivg35yqRa/nSBtF5AeA50IIv32Whs04zjl8O/B2Efl3IvJ5EfnRM7PuCM61DamIfAZYO+StD88/CSEEETlsOdwA7wG+H/g28HHgp4FfuUA2fhD4nRDCzdMY6DwB+5r9XAX+OfCBEIJ/sla++RCRnwJeBH7ovG2ZZ3YD/l+or4OLiqGeNv9l6hH250Tkz4YQNs/VKs5ZEEMI733UeyJyR0SuhhBuzS7Ww4bVN4E/CCG8PPub3wT+Ik9QEJ+AjX8JeI+IfJDaxxmJyG4I4ZHO8DO2DxHpA78NfDiE8PknYdcjeBV4bu75s7PXDtvmpogYYAA8OEWbDjt2w2H2ISLvpb7h/FAIIT8j2xqOsrEH/Bngd2c34DXgkyLyYyGEL14A+6C+bv9DCKEEviEiX6UWyC+cgX2P5SJPmT8JfGD2+APAbx2yzReAoYg0Pq+/Crx0BrY1HGljCOFvhRCeDyG8QD1t/rUnJYZPwj4RiYD/a2bXb5yyPV8A3iYib5kd9ydnNs4zb/N/AfzbMPO8nwFH2ici3w/8H8CPnZPv67E2hhC2QgjLIYQXZt+5z89sPQsxPNK+Gb9JPTpERJapp9Avn5F9j+e8V3Ue9UPtN/os8DXgM8Di7PUXgY/Obfc+4EvAl4FfBaKLZuPc9j/N2a4yH2kf8FNACfzB3M/3naJN7we+Su2n/PDstV+gvmgBEuBfA38K/B5w44y/d0fZ9xngzty5+uRZ2nccGw9s+7uc4SrzMc+hUE/rX5pdtz951ufwUT9tpkpLS0vLjIs8ZW5paWk5U1pBhRLUQAAAADhJREFUbGlpaZnRCmJLS0vLjFYQW1paWma0gtjS0tIyoxXElpaWlhmtILa0tLTMaAWxpaWlZcb/Dyl/KJghKnzBAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 360x360 with 1 Axes>"
       ]
@@ -194,9 +195,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "SSE from sketch: 619060.4839675338\n",
+      "SSE from sketch: 615246.3229068591\n",
       "SSE from k-means: 591302.7260215983\n",
-      "Relative SSE (SSE of usual k-means / SSE of the centroids from the sketch): 1.046943395868805\n"
+      "Relative SSE (SSE of usual k-means / SSE of the centroids recovered from the sketch): 1.0404929587359728\n"
      ]
     }
    ],
@@ -220,7 +221,7 @@
     "SSE_kmeans = pycle.utils.SSE(X,centroids_kmeans)\n",
     "print(\"SSE from k-means: {}\".format(SSE_kmeans))\n",
     "\n",
-    "print(\"Relative SSE (SSE of usual k-means / SSE of the centroids from the sketch): {}\".format(SSE_sketching/SSE_kmeans))\n"
+    "print(\"Relative SSE (SSE of usual k-means / SSE of the centroids recovered from the sketch): {}\".format(SSE_sketching/SSE_kmeans))\n"
    ]
   },
   {
diff --git a/2 - Building intuition for sketched learning.ipynb b/2 - Building intuition for sketched learning.ipynb
index 4d13eefd3061632b645299a5b2248e346dbd384c..5b5f5506de17d80a022a7cf0d57002185252282b 100644
--- a/2 - Building intuition for sketched learning.ipynb	
+++ b/2 - Building intuition for sketched learning.ipynb	
@@ -20,7 +20,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -39,13 +39,15 @@
     "import pycle\n",
     "from pycle import sketching, compressive_learning, utils\n",
     "\n",
+    "from plot_utils import do_the_plot_for_notebook_2\n",
+    "\n",
     "# Fix the random seed for reproducibility\n",
     "np.random.seed(0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -78,813 +80,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/javascript": [
-       "/* Put everything inside the global mpl namespace */\n",
-       "window.mpl = {};\n",
-       "\n",
-       "\n",
-       "mpl.get_websocket_type = function() {\n",
-       "    if (typeof(WebSocket) !== 'undefined') {\n",
-       "        return WebSocket;\n",
-       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
-       "        return MozWebSocket;\n",
-       "    } else {\n",
-       "        alert('Your browser does not have WebSocket support. ' +\n",
-       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "              'Firefox 4 and 5 are also supported but you ' +\n",
-       "              'have to enable WebSockets in about:config.');\n",
-       "    };\n",
-       "}\n",
-       "\n",
-       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
-       "    this.id = figure_id;\n",
-       "\n",
-       "    this.ws = websocket;\n",
-       "\n",
-       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
-       "\n",
-       "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
-       "        if (warnings) {\n",
-       "            warnings.style.display = 'block';\n",
-       "            warnings.textContent = (\n",
-       "                \"This browser does not support binary websocket messages. \" +\n",
-       "                    \"Performance may be slow.\");\n",
-       "        }\n",
-       "    }\n",
-       "\n",
-       "    this.imageObj = new Image();\n",
-       "\n",
-       "    this.context = undefined;\n",
-       "    this.message = undefined;\n",
-       "    this.canvas = undefined;\n",
-       "    this.rubberband_canvas = undefined;\n",
-       "    this.rubberband_context = undefined;\n",
-       "    this.format_dropdown = undefined;\n",
-       "\n",
-       "    this.image_mode = 'full';\n",
-       "\n",
-       "    this.root = $('<div/>');\n",
-       "    this._root_extra_style(this.root)\n",
-       "    this.root.attr('style', 'display: inline-block');\n",
-       "\n",
-       "    $(parent_element).append(this.root);\n",
-       "\n",
-       "    this._init_header(this);\n",
-       "    this._init_canvas(this);\n",
-       "    this._init_toolbar(this);\n",
-       "\n",
-       "    var fig = this;\n",
-       "\n",
-       "    this.waiting = false;\n",
-       "\n",
-       "    this.ws.onopen =  function () {\n",
-       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
-       "            fig.send_message(\"send_image_mode\", {});\n",
-       "            if (mpl.ratio != 1) {\n",
-       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
-       "            }\n",
-       "            fig.send_message(\"refresh\", {});\n",
-       "        }\n",
-       "\n",
-       "    this.imageObj.onload = function() {\n",
-       "            if (fig.image_mode == 'full') {\n",
-       "                // Full images could contain transparency (where diff images\n",
-       "                // almost always do), so we need to clear the canvas so that\n",
-       "                // there is no ghosting.\n",
-       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "            }\n",
-       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "        };\n",
-       "\n",
-       "    this.imageObj.onunload = function() {\n",
-       "        fig.ws.close();\n",
-       "    }\n",
-       "\n",
-       "    this.ws.onmessage = this._make_on_message_function(this);\n",
-       "\n",
-       "    this.ondownload = ondownload;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function() {\n",
-       "    var titlebar = $(\n",
-       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
-       "        'ui-helper-clearfix\"/>');\n",
-       "    var titletext = $(\n",
-       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
-       "        'text-align: center; padding: 3px;\"/>');\n",
-       "    titlebar.append(titletext)\n",
-       "    this.root.append(titlebar);\n",
-       "    this.header = titletext[0];\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_canvas = function() {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var canvas_div = $('<div/>');\n",
-       "\n",
-       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
-       "\n",
-       "    function canvas_keyboard_event(event) {\n",
-       "        return fig.key_event(event, event['data']);\n",
-       "    }\n",
-       "\n",
-       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
-       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
-       "    this.canvas_div = canvas_div\n",
-       "    this._canvas_extra_style(canvas_div)\n",
-       "    this.root.append(canvas_div);\n",
-       "\n",
-       "    var canvas = $('<canvas/>');\n",
-       "    canvas.addClass('mpl-canvas');\n",
-       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
-       "\n",
-       "    this.canvas = canvas[0];\n",
-       "    this.context = canvas[0].getContext(\"2d\");\n",
-       "\n",
-       "    var backingStore = this.context.backingStorePixelRatio ||\n",
-       "\tthis.context.webkitBackingStorePixelRatio ||\n",
-       "\tthis.context.mozBackingStorePixelRatio ||\n",
-       "\tthis.context.msBackingStorePixelRatio ||\n",
-       "\tthis.context.oBackingStorePixelRatio ||\n",
-       "\tthis.context.backingStorePixelRatio || 1;\n",
-       "\n",
-       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
-       "\n",
-       "    var rubberband = $('<canvas/>');\n",
-       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
-       "\n",
-       "    var pass_mouse_events = true;\n",
-       "\n",
-       "    canvas_div.resizable({\n",
-       "        start: function(event, ui) {\n",
-       "            pass_mouse_events = false;\n",
-       "        },\n",
-       "        resize: function(event, ui) {\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "        stop: function(event, ui) {\n",
-       "            pass_mouse_events = true;\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "    });\n",
-       "\n",
-       "    function mouse_event_fn(event) {\n",
-       "        if (pass_mouse_events)\n",
-       "            return fig.mouse_event(event, event['data']);\n",
-       "    }\n",
-       "\n",
-       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
-       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
-       "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
-       "\n",
-       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
-       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
-       "\n",
-       "    canvas_div.on(\"wheel\", function (event) {\n",
-       "        event = event.originalEvent;\n",
-       "        event['data'] = 'scroll'\n",
-       "        if (event.deltaY < 0) {\n",
-       "            event.step = 1;\n",
-       "        } else {\n",
-       "            event.step = -1;\n",
-       "        }\n",
-       "        mouse_event_fn(event);\n",
-       "    });\n",
-       "\n",
-       "    canvas_div.append(canvas);\n",
-       "    canvas_div.append(rubberband);\n",
-       "\n",
-       "    this.rubberband = rubberband;\n",
-       "    this.rubberband_canvas = rubberband[0];\n",
-       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
-       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
-       "\n",
-       "    this._resize_canvas = function(width, height) {\n",
-       "        // Keep the size of the canvas, canvas container, and rubber band\n",
-       "        // canvas in synch.\n",
-       "        canvas_div.css('width', width)\n",
-       "        canvas_div.css('height', height)\n",
-       "\n",
-       "        canvas.attr('width', width * mpl.ratio);\n",
-       "        canvas.attr('height', height * mpl.ratio);\n",
-       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
-       "\n",
-       "        rubberband.attr('width', width);\n",
-       "        rubberband.attr('height', height);\n",
-       "    }\n",
-       "\n",
-       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
-       "    // upon first draw.\n",
-       "    this._resize_canvas(600, 600);\n",
-       "\n",
-       "    // Disable right mouse context menu.\n",
-       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
-       "        return false;\n",
-       "    });\n",
-       "\n",
-       "    function set_focus () {\n",
-       "        canvas.focus();\n",
-       "        canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    window.setTimeout(set_focus, 100);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
-       "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
-       "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
-       "    }\n",
-       "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) {\n",
-       "            // put a spacer in here.\n",
-       "            continue;\n",
-       "        }\n",
-       "        var button = $('<button/>');\n",
-       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
-       "                        'ui-button-icon-only');\n",
-       "        button.attr('role', 'button');\n",
-       "        button.attr('aria-disabled', 'false');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "\n",
-       "        var icon_img = $('<span/>');\n",
-       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
-       "        icon_img.addClass(image);\n",
-       "        icon_img.addClass('ui-corner-all');\n",
-       "\n",
-       "        var tooltip_span = $('<span/>');\n",
-       "        tooltip_span.addClass('ui-button-text');\n",
-       "        tooltip_span.html(tooltip);\n",
-       "\n",
-       "        button.append(icon_img);\n",
-       "        button.append(tooltip_span);\n",
-       "\n",
-       "        nav_element.append(button);\n",
-       "    }\n",
-       "\n",
-       "    var fmt_picker_span = $('<span/>');\n",
-       "\n",
-       "    var fmt_picker = $('<select/>');\n",
-       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
-       "    fmt_picker_span.append(fmt_picker);\n",
-       "    nav_element.append(fmt_picker_span);\n",
-       "    this.format_dropdown = fmt_picker[0];\n",
-       "\n",
-       "    for (var ind in mpl.extensions) {\n",
-       "        var fmt = mpl.extensions[ind];\n",
-       "        var option = $(\n",
-       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
-       "        fmt_picker.append(option);\n",
-       "    }\n",
-       "\n",
-       "    // Add hover states to the ui-buttons\n",
-       "    $( \".ui-button\" ).hover(\n",
-       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
-       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
-       "    );\n",
-       "\n",
-       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
-       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
-       "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.send_message = function(type, properties) {\n",
-       "    properties['type'] = type;\n",
-       "    properties['figure_id'] = this.id;\n",
-       "    this.ws.send(JSON.stringify(properties));\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.send_draw_message = function() {\n",
-       "    if (!this.waiting) {\n",
-       "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
-       "    }\n",
-       "}\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
-       "    var format_dropdown = fig.format_dropdown;\n",
-       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
-       "    fig.ondownload(fig, format);\n",
-       "}\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
-       "    var size = msg['size'];\n",
-       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1]);\n",
-       "        fig.send_message(\"refresh\", {});\n",
-       "    };\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
-       "    var x0 = msg['x0'] / mpl.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
-       "    var x1 = msg['x1'] / mpl.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
-       "    x0 = Math.floor(x0) + 0.5;\n",
-       "    y0 = Math.floor(y0) + 0.5;\n",
-       "    x1 = Math.floor(x1) + 0.5;\n",
-       "    y1 = Math.floor(y1) + 0.5;\n",
-       "    var min_x = Math.min(x0, x1);\n",
-       "    var min_y = Math.min(y0, y1);\n",
-       "    var width = Math.abs(x1 - x0);\n",
-       "    var height = Math.abs(y1 - y0);\n",
-       "\n",
-       "    fig.rubberband_context.clearRect(\n",
-       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
-       "\n",
-       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
-       "    // Updates the figure title.\n",
-       "    fig.header.textContent = msg['label'];\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch(cursor)\n",
-       "    {\n",
-       "    case 0:\n",
-       "        cursor = 'pointer';\n",
-       "        break;\n",
-       "    case 1:\n",
-       "        cursor = 'default';\n",
-       "        break;\n",
-       "    case 2:\n",
-       "        cursor = 'crosshair';\n",
-       "        break;\n",
-       "    case 3:\n",
-       "        cursor = 'move';\n",
-       "        break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
-       "    fig.message.textContent = msg['message'];\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
-       "    // Request the server to send over a new figure.\n",
-       "    fig.send_draw_message();\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
-       "    fig.image_mode = msg['mode'];\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
-       "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message(\"ack\", {});\n",
-       "}\n",
-       "\n",
-       "// A function to construct a web socket function for onmessage handling.\n",
-       "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
-       "    return function socket_on_message(evt) {\n",
-       "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = \"image/png\";\n",
-       "\n",
-       "            /* Free the memory for the previous frames */\n",
-       "            if (fig.imageObj.src) {\n",
-       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src);\n",
-       "            }\n",
-       "\n",
-       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data);\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        }\n",
-       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
-       "            fig.imageObj.src = evt.data;\n",
-       "            fig.updated_canvas_event();\n",
-       "            fig.waiting = false;\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        var msg = JSON.parse(evt.data);\n",
-       "        var msg_type = msg['type'];\n",
-       "\n",
-       "        // Call the  \"handle_{type}\" callback, which takes\n",
-       "        // the figure and JSON message as its only arguments.\n",
-       "        try {\n",
-       "            var callback = fig[\"handle_\" + msg_type];\n",
-       "        } catch (e) {\n",
-       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
-       "            return;\n",
-       "        }\n",
-       "\n",
-       "        if (callback) {\n",
-       "            try {\n",
-       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
-       "                callback(fig, msg);\n",
-       "            } catch (e) {\n",
-       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
-       "            }\n",
-       "        }\n",
-       "    };\n",
-       "}\n",
-       "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function(e) {\n",
-       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
-       "    var targ;\n",
-       "    if (!e)\n",
-       "        e = window.event;\n",
-       "    if (e.target)\n",
-       "        targ = e.target;\n",
-       "    else if (e.srcElement)\n",
-       "        targ = e.srcElement;\n",
-       "    if (targ.nodeType == 3) // defeat Safari bug\n",
-       "        targ = targ.parentNode;\n",
-       "\n",
-       "    // jQuery normalizes the pageX and pageY\n",
-       "    // pageX,Y are the mouse positions relative to the document\n",
-       "    // offset() returns the position of the element relative to the document\n",
-       "    var x = e.pageX - $(targ).offset().left;\n",
-       "    var y = e.pageY - $(targ).offset().top;\n",
-       "\n",
-       "    return {\"x\": x, \"y\": y};\n",
-       "};\n",
-       "\n",
-       "/*\n",
-       " * return a copy of an object with only non-object keys\n",
-       " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
-       " */\n",
-       "function simpleKeys (original) {\n",
-       "  return Object.keys(original).reduce(function (obj, key) {\n",
-       "    if (typeof original[key] !== 'object')\n",
-       "        obj[key] = original[key]\n",
-       "    return obj;\n",
-       "  }, {});\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event)\n",
-       "\n",
-       "    if (name === 'button_press')\n",
-       "    {\n",
-       "        this.canvas.focus();\n",
-       "        this.canvas_div.focus();\n",
-       "    }\n",
-       "\n",
-       "    var x = canvas_pos.x * mpl.ratio;\n",
-       "    var y = canvas_pos.y * mpl.ratio;\n",
-       "\n",
-       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
-       "                             step: event.step,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
-       "\n",
-       "    /* This prevents the web browser from automatically changing to\n",
-       "     * the text insertion cursor when the button is pressed.  We want\n",
-       "     * to control all of the cursor setting manually through the\n",
-       "     * 'cursor' event from matplotlib */\n",
-       "    event.preventDefault();\n",
-       "    return false;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    // Handle any extra behaviour associated with a key event\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function(event, name) {\n",
-       "\n",
-       "    // Prevent repeat events\n",
-       "    if (name == 'key_press')\n",
-       "    {\n",
-       "        if (event.which === this._key)\n",
-       "            return;\n",
-       "        else\n",
-       "            this._key = event.which;\n",
-       "    }\n",
-       "    if (name == 'key_release')\n",
-       "        this._key = null;\n",
-       "\n",
-       "    var value = '';\n",
-       "    if (event.ctrlKey && event.which != 17)\n",
-       "        value += \"ctrl+\";\n",
-       "    if (event.altKey && event.which != 18)\n",
-       "        value += \"alt+\";\n",
-       "    if (event.shiftKey && event.which != 16)\n",
-       "        value += \"shift+\";\n",
-       "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
-       "\n",
-       "    this._key_event_extra(event, name);\n",
-       "\n",
-       "    this.send_message(name, {key: value,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
-       "    return false;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
-       "    if (name == 'download') {\n",
-       "        this.handle_save(this, null);\n",
-       "    } else {\n",
-       "        this.send_message(\"toolbar_button\", {name: name});\n",
-       "    }\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
-       "    this.message.textContent = tooltip;\n",
-       "};\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
-       "\n",
-       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
-       "\n",
-       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
-       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
-       "    // object with the appropriate methods. Currently this is a non binary\n",
-       "    // socket, so there is still some room for performance tuning.\n",
-       "    var ws = {};\n",
-       "\n",
-       "    ws.close = function() {\n",
-       "        comm.close()\n",
-       "    };\n",
-       "    ws.send = function(m) {\n",
-       "        //console.log('sending', m);\n",
-       "        comm.send(m);\n",
-       "    };\n",
-       "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function(msg) {\n",
-       "        //console.log('receiving', msg['content']['data'], msg);\n",
-       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data'])\n",
-       "    });\n",
-       "    return ws;\n",
-       "}\n",
-       "\n",
-       "mpl.mpl_figure_comm = function(comm, msg) {\n",
-       "    // This is the function which gets called when the mpl process\n",
-       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
-       "\n",
-       "    var id = msg.content.data.id;\n",
-       "    // Get hold of the div created by the display call when the Comm\n",
-       "    // socket was opened in Python.\n",
-       "    var element = $(\"#\" + id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm)\n",
-       "\n",
-       "    function ondownload(figure, format) {\n",
-       "        window.open(figure.imageObj.src);\n",
-       "    }\n",
-       "\n",
-       "    var fig = new mpl.figure(id, ws_proxy,\n",
-       "                           ondownload,\n",
-       "                           element.get(0));\n",
-       "\n",
-       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
-       "    // web socket which is closed, not our websocket->open comm proxy.\n",
-       "    ws_proxy.onopen();\n",
-       "\n",
-       "    fig.parent_element = element.get(0);\n",
-       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
-       "    if (!fig.cell_info) {\n",
-       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
-       "        return;\n",
-       "    }\n",
-       "\n",
-       "    var output_index = fig.cell_info[2]\n",
-       "    var cell = fig.cell_info[0];\n",
-       "\n",
-       "};\n",
-       "\n",
-       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
-       "    var width = fig.canvas.width/mpl.ratio\n",
-       "    fig.root.unbind('remove')\n",
-       "\n",
-       "    // Update the output cell to use the data from the current canvas.\n",
-       "    fig.push_to_output();\n",
-       "    var dataURL = fig.canvas.toDataURL();\n",
-       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
-       "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable()\n",
-       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
-       "    fig.close_ws(fig, msg);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
-       "    fig.send_message('closing', msg);\n",
-       "    // fig.ws.close()\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
-       "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width/mpl.ratio\n",
-       "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
-       "    // Tell IPython that the notebook contents must change.\n",
-       "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message(\"ack\", {});\n",
-       "    var fig = this;\n",
-       "    // Wait a second, then push the new image to the DOM so\n",
-       "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
-       "    var fig = this;\n",
-       "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
-       "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
-       "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
-       "    }\n",
-       "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items){\n",
-       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
-       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
-       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
-       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
-       "\n",
-       "        if (!name) { continue; };\n",
-       "\n",
-       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "        nav_element.append(button);\n",
-       "    }\n",
-       "\n",
-       "    // Add the status bar.\n",
-       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "\n",
-       "    // Add the close button to the window.\n",
-       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
-       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
-       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
-       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
-       "    buttongrp.append(button);\n",
-       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
-       "    titlebar.prepend(buttongrp);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(el){\n",
-       "    var fig = this\n",
-       "    el.on(\"remove\", function(){\n",
-       "\tfig.close_ws(fig, {});\n",
-       "    });\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
-       "    // this is important to make the div 'focusable\n",
-       "    el.attr('tabindex', 0)\n",
-       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
-       "    // off when our div gets focus\n",
-       "\n",
-       "    // location in version 3\n",
-       "    if (IPython.notebook.keyboard_manager) {\n",
-       "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "    else {\n",
-       "        // location in version 2\n",
-       "        IPython.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager)\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "\n",
-       "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which == 13) {\n",
-       "        this.canvas_div.blur();\n",
-       "        // select the cell after this one\n",
-       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
-       "        IPython.notebook.select(index + 1);\n",
-       "    }\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
-       "    fig.ondownload(fig, null);\n",
-       "}\n",
-       "\n",
-       "\n",
-       "mpl.find_output_cell = function(html_output) {\n",
-       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
-       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
-       "    // IPython event is triggered only after the cells have been serialised, which for\n",
-       "    // our purposes (turning an active figure into a static one), is too late.\n",
-       "    var cells = IPython.notebook.get_cells();\n",
-       "    var ncells = cells.length;\n",
-       "    for (var i=0; i<ncells; i++) {\n",
-       "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code'){\n",
-       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
-       "                var data = cell.output_area.outputs[j];\n",
-       "                if (data.data) {\n",
-       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
-       "                    data = data.data;\n",
-       "                }\n",
-       "                if (data['text/html'] == html_output) {\n",
-       "                    return [cell, data, j];\n",
-       "                }\n",
-       "            }\n",
-       "        }\n",
-       "    }\n",
-       "}\n",
-       "\n",
-       "// Register the function which deals with the matplotlib target/channel.\n",
-       "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel != null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
-       "}\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.Javascript object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"\" width=\"999.9\">"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "8e52ba61e931496d93b5cc2427c3d984",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(Dropdown(description='task', options={'1means2D': '1means2D', '2means1D': '2means1D', '1…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "tasks = {\n",
     "    '1means2D': '1means2D',\n",
@@ -961,6 +159,7 @@
     "    if task == '1means2D' or task == '2means1D':\n",
     "        thetas_00 = np.linspace(low_pos,upp_pos,nTest)\n",
     "        thetas_11 = np.linspace(low_pos,upp_pos,nTest)\n",
+    "        pos_fine = None\n",
     "    elif task == '1GMM1D':\n",
     "        thetas_00 = np.linspace(low_pos,upp_pos,nTest)\n",
     "        thetas_11 = np.linspace(low_var,upp_var,nTest)\n",
@@ -977,64 +176,8 @@
     "            cost_R[i_0,i_1] = f_cost_R(th_0,th_1,X,task)\n",
     "            cost_L[i_0,i_1] = f_cost_L(th_0,th_1,z,Phi,task)\n",
     "\n",
-    "    # Find minimum of both costs\n",
-    "    index_sol_L = np.unravel_index(np.argmin(cost_L),cost_L.shape)\n",
-    "    index_sol_R = np.unravel_index(np.argmin(cost_R),cost_R.shape)\n",
-    "    index_sol_R = tuple(np.flip(index_sol_R))\n",
-    "    index_sol_L = tuple(np.flip(index_sol_L))\n",
-    "    \n",
-    "    # First plot (data)\n",
-    "    ax1.cla()\n",
-    "    if task == '1means2D':\n",
-    "        ax1.scatter(X[:,0],X[:,1],s=1, alpha=0.1)\n",
-    "        ax1.scatter(thetas_0[index_sol_R],thetas_1[index_sol_R], s=ballsize+8, c=cR, label=\"true params.\")\n",
-    "        ax1.scatter(thetas_0[index_sol_L],thetas_1[index_sol_L], s=ballsize-6, c=cL, label=\"sketched params.\")\n",
-    "        ax1.set_ylim((-1,1))\n",
-    "        ax1.set_xlabel(r'$x_1$')\n",
-    "        ax1.set_ylabel(r'$x_2$')\n",
-    "    elif task == '2means1D':\n",
-    "        ax1.hist(X,bins=40, weights = np.ones(n)/n, alpha=0.55)\n",
-    "        ylim = ax1.get_ylim()\n",
-    "        ax1.plot(thetas_0[index_sol_R],ylim[1]/20, marker=\".\",markersize=markersize, c=cR, label=\"true params.\")\n",
-    "        ax1.plot(thetas_1[index_sol_R],ylim[1]/20, marker=\".\",markersize=markersize, c=cR)\n",
-    "        ax1.plot(thetas_0[index_sol_L],ylim[1]/20, marker=\".\",markersize=markersize-5, c=cL, label=\"sketched params.\")\n",
-    "        ax1.plot(thetas_1[index_sol_L],ylim[1]/20, marker=\".\",markersize=markersize-5, c=cL)   \n",
-    "        ax1.set_xlabel(r'$x_1$')\n",
-    "    elif task == '1GMM1D':\n",
-    "        ax1.hist(X,bins=40, density=True, alpha=0.55)\n",
-    "        ax1.plot(pos_fine,scipy.stats.norm.pdf(pos_fine, loc = thetas_0[index_sol_R],\n",
-    "                                               scale=np.sqrt(10**thetas_1[index_sol_R])),c=cR,lw=lw+1.5, label=\"true params.\")\n",
-    "        ax1.plot(pos_fine,scipy.stats.norm.pdf(pos_fine, loc = thetas_0[index_sol_L],\n",
-    "                                               scale=np.sqrt(10**thetas_1[index_sol_L])),c=cL,lw=lw, label=\"sketched params.\")\n",
-    "\n",
-    "        ax1.set_xlabel(r'$x_1$')\n",
-    "    ax1.set_xlim((-1, +1))\n",
-    "    ax1.set_title(\"Dataset ({}-dimensional)\".format(d))\n",
-    "    ax1.legend()\n",
-    "    \n",
-    "\n",
-    "    # Second plot (true cost)\n",
-    "    ax2.cla()\n",
-    "    cost_R_to_disp = np.log(cost_R - np.min(cost_R) + 1).T\n",
-    "    ax2.contourf(thetas_0,thetas_1,cost_R_to_disp,30)\n",
-    "    ax2.scatter(thetas_0[index_sol_R],thetas_1[index_sol_R], s=ballsize, c=cR)\n",
-    "    ax2.set_title(\"True risk $R$ (log scale)\")\n",
-    "    ax2.set_xlabel(r'$\\theta_1$')\n",
-    "    ax2.set_ylabel(r'$\\theta_2$')\n",
-    "    if task == '1GMM1D':\n",
-    "        old_ticks = ax2.get_yticks()\n",
-    "        ax2.set_yticklabels(['$10^{'+str(t)+'}$' for t in old_ticks])\n",
-    "\n",
-    "    # Second plot (sketched cost)\n",
-    "    ax3.cla()\n",
-    "    ax3.contourf(thetas_0,thetas_1,cost_L.T,30)\n",
-    "    ax3.scatter(thetas_0[index_sol_L],thetas_1[index_sol_L], s=ballsize, c=cL)\n",
-    "    ax3.set_title(\"Sketched cost $L$\")\n",
-    "    ax3.set_xlabel(r'$\\theta_1$')\n",
-    "    ax3.set_ylabel(r'$\\theta_2$')\n",
-    "    if task == '1GMM1D':\n",
-    "        old_ticks = ax3.get_yticks()\n",
-    "        ax3.set_yticklabels(['$10^{'+str(t)+'}$' for t in old_ticks])\n",
+    "    # Call the dedicated plotting subroutine from plot_utils.py\n",
+    "    do_the_plot_for_notebook_2(task,d,ax1,ax2,ax3,thetas_0,thetas_1,X,cost_L,cost_R,ballsize,cR,cL,markersize,lw,pos_fine)\n",
     "\n"
    ]
   },
diff --git a/plot_utils.py b/plot_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccfa2b2016fedf2630778348f71eb577512216e1
--- /dev/null
+++ b/plot_utils.py
@@ -0,0 +1,64 @@
+import numpy as np
+import scipy.stats
+
+
+def do_the_plot_for_notebook_2(task,d,ax1,ax2,ax3,thetas_0,thetas_1,X,cost_L,cost_R,ballsize,cR,cL,markersize,lw,pos_fine):
+    """Plotting utility for the second notebook, creates three subplots ax1, ax2 and ax3 according to the given task."""
+    # Find minimum of both costs
+    index_sol_L = np.unravel_index(np.argmin(cost_L),cost_L.shape)
+    index_sol_R = np.unravel_index(np.argmin(cost_R),cost_R.shape)
+    index_sol_R = tuple(np.flip(index_sol_R))
+    index_sol_L = tuple(np.flip(index_sol_L))
+    
+    # First plot (data)
+    ax1.cla()
+    if task == '1means2D':
+        ax1.scatter(X[:,0],X[:,1],s=1, alpha=0.1)
+        ax1.scatter(thetas_0[index_sol_R],thetas_1[index_sol_R], s=ballsize+8, c=cR, label="true params.")
+        ax1.scatter(thetas_0[index_sol_L],thetas_1[index_sol_L], s=ballsize-6, c=cL, label="sketched params.")
+        ax1.set_ylim((-1,1))
+        ax1.set_xlabel(r'$x_1$')
+        ax1.set_ylabel(r'$x_2$')
+    elif task == '2means1D':
+        ax1.hist(X,bins=40, weights = np.ones(n)/n, alpha=0.55)
+        ylim = ax1.get_ylim()
+        ax1.plot(thetas_0[index_sol_R],ylim[1]/20, marker=".",markersize=markersize, c=cR, label="true params.")
+        ax1.plot(thetas_1[index_sol_R],ylim[1]/20, marker=".",markersize=markersize, c=cR)
+        ax1.plot(thetas_0[index_sol_L],ylim[1]/20, marker=".",markersize=markersize-5, c=cL, label="sketched params.")
+        ax1.plot(thetas_1[index_sol_L],ylim[1]/20, marker=".",markersize=markersize-5, c=cL)   
+        ax1.set_xlabel(r'$x_1$')
+    elif task == '1GMM1D':
+        ax1.hist(X,bins=40, density=True, alpha=0.55)
+        ax1.plot(pos_fine,scipy.stats.norm.pdf(pos_fine, loc = thetas_0[index_sol_R],
+                                               scale=np.sqrt(10**thetas_1[index_sol_R])),c=cR,lw=lw+1.5, label="true params.")
+        ax1.plot(pos_fine,scipy.stats.norm.pdf(pos_fine, loc = thetas_0[index_sol_L],
+                                               scale=np.sqrt(10**thetas_1[index_sol_L])),c=cL,lw=lw, label="sketched params.")
+
+        ax1.set_xlabel(r'$x_1$')
+    ax1.set_xlim((-1, +1))
+    ax1.set_title("Dataset ({}-dimensional)".format(d))
+    ax1.legend()
+
+
+    # Second plot (true cost)
+    ax2.cla()
+    cost_R_to_disp = np.log(cost_R - np.min(cost_R) + 1).T
+    ax2.contourf(thetas_0,thetas_1,cost_R_to_disp,30)
+    ax2.scatter(thetas_0[index_sol_R],thetas_1[index_sol_R], s=ballsize, c=cR)
+    ax2.set_title("True risk $R$ (log scale)")
+    ax2.set_xlabel(r'$\theta_1$')
+    ax2.set_ylabel(r'$\theta_2$')
+    if task == '1GMM1D':
+        old_ticks = ax2.get_yticks()
+        ax2.set_yticklabels(['$10^{'+str(t)+'}$' for t in old_ticks])
+
+    # Second plot (sketched cost)
+    ax3.cla()
+    ax3.contourf(thetas_0,thetas_1,cost_L.T,30)
+    ax3.scatter(thetas_0[index_sol_L],thetas_1[index_sol_L], s=ballsize, c=cL)
+    ax3.set_title("Sketched cost $L$")
+    ax3.set_xlabel(r'$\theta_1$')
+    ax3.set_ylabel(r'$\theta_2$')
+    if task == '1GMM1D':
+        old_ticks = ax3.get_yticks()
+        ax3.set_yticklabels(['$10^{'+str(t)+'}$' for t in old_ticks])
\ No newline at end of file
diff --git a/pycle/utils.py b/pycle/utils.py
index a82979a522f9abb41738c8cc5a8312dbd07d06d5..ed42481573c288b245cce81cf8759495f46bc037 100644
--- a/pycle/utils.py
+++ b/pycle/utils.py
@@ -440,9 +440,7 @@ def loglikelihood_GMM(P,X,robust = True):
     Returns:
         - loglikelihood: real, the loglikelihood value defined above
     """
-    
-    # TODO : avoid recomputations of inv
-    
+        
     # Unpack
     (w,mu,Sig) = P
     (K,d) = mu.shape
@@ -452,7 +450,8 @@ def loglikelihood_GMM(P,X,robust = True):
     
     for k in range(K):
         p += w[k]*scipy.stats.multivariate_normal.pdf(X, mean=mu[k], cov=Sig[k], allow_singular=True)
-    logp = np.log(p)
+    with np.errstate(divide='ignore'): # ignore divide by zero warning
+        logp = np.log(p)
     
     if robust:
         b = np.zeros(K)