diff --git a/data/tuto1/vtt/tuto1-activite1-vid1-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid1-en.vtt index a545f086b757ca11e4ca7124b30e18a5de60a0a4..1b4c9274aa475475bae458ef85fade425bc95782 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid1-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid1-en.vtt @@ -1,40 +1,62 @@ -WEBVTT +WEBVTT FILE -00:00:00.333 --> 00:00:02.914 +1 +00:00:00.048 --> 00:00:02.715 What is artificial intelligence? -00:00:03.541 --> 00:00:06.666 -AI, or artificial intelligence, -is a collection of IT tools +2 +00:00:03.381 --> 00:00:06.756 +AI or artificial intelligence +is a set of computer tools -00:00:06.750 --> 00:00:10.083 -that mimic actions -previously only done by humans. +3 +00:00:06.798 --> 00:00:10.506 +that mimic activities +previously performed only by humans. -00:00:10.370 --> 00:00:12.515 -They are most often cognitive actions. +4 +00:00:10.548 --> 00:00:12.381 +These are usually cognitive activities. -00:00:12.583 --> 00:00:16.084 -For example, recognising what is -in an image or even translating a text. +5 +00:00:12.423 --> 00:00:16.604 +For example, it recognises +what is in a picture or translates text. -00:00:16.509 --> 00:00:18.020 -We can find it all around us! +6 +00:00:16.643 --> 00:00:18.179 +It is all around us. -00:00:18.083 --> 00:00:20.729 -Our phone recognising faces on our photos, +7 +00:00:18.215 --> 00:00:20.881 +Our phones recognise faces in our photos, -00:00:20.790 --> 00:00:24.174 -translation sites that immediately -recognise the language being spoken. +8 +00:00:20.923 --> 00:00:22.756 +translation sites recognise the language -00:00:24.521 --> 00:00:29.382 -Social media apps that can recognise faces -on our photos so we can add rabbit ears. +9 +00:00:22.798 --> 00:00:24.256 +we speak before we even tell them, -00:00:29.458 --> 00:00:32.179 -Voice assistants -who we can speak to. Great, right? +10 +00:00:24.298 --> 00:00:27.756 +social networks can recognise faces +in our pictures + +11 +00:00:27.798 --> 00:00:29.506 +and add bunny ears to them, + +12 +00:00:29.548 --> 00:00:31.131 +and we have voice assistants to talk to. + +13 +00:00:31.173 --> 00:00:32.131 +How cool is that? + +14 +00:00:32.173 --> 00:00:33.715 +Let's take a closer look. -00:00:32.497 --> 00:00:33.685 -Let's take a closer look. \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid1-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid1-it.vtt old mode 100755 new mode 100644 index ccfa12c1efecd083a1cbb16fad2e4b6a61ac4727..2d3b1901075496baa0e7c3ac057b22de6cc6f9ab --- a/data/tuto1/vtt/tuto1-activite1-vid1-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid1-it.vtt @@ -1,40 +1,68 @@ -WEBVTT +WEBVTT FILE -00:00:00.333 --> 00:00:02.914 -Cos'è l'intelligenza artificiale? +1 +00:00:00.473 --> 00:00:02.806 +CHE COS'È L'INTELLIGENZA ARTIFICIALE? -00:00:03.541 --> 00:00:06.666 -AI, o intelligenza artificiale, -è un insieme di strumenti IT +2 +00:00:02.831 --> 00:00:05.060 +L'IA o intelligenza artificiale -00:00:06.750 --> 00:00:10.083 -che imitano azioni -precedentemente fatte solo dagli umani. +3 +00:00:05.085 --> 00:00:06.957 +è un insieme di strumenti informatici -00:00:10.370 --> 00:00:12.515 -Sono più spesso azioni cognitive. +4 +00:00:06.982 --> 00:00:10.476 +che simulano attività +finora realizzate unicamente dagli umani. -00:00:12.583 --> 00:00:16.084 -Per esempio, riconoscere ciò che è -in un'immagine o anche tradurre un testo. +5 +00:00:10.501 --> 00:00:12.536 +Interessa perlopiù le attività cognitive. -00:00:16.509 --> 00:00:18.020 -Possiamo trovarlo tutto intorno a noi! +6 +00:00:12.561 --> 00:00:15.290 +Ad esempio, riconoscere un'immagine +o tradurre un testo. -00:00:18.083 --> 00:00:20.729 -Il nostro telefono riconosce i volti sulle nostre foto, +7 +00:00:15.315 --> 00:00:16.790 +La troviamo ovunque intorno a noi: -00:00:20.790 --> 00:00:24.174 -siti di traduzione che riconoscono immediatamente -riconoscono la lingua parlata. +8 +00:00:16.815 --> 00:00:19.650 +i nostri telefoni, che riconoscono +il nostro viso nelle foto, -00:00:24.521 --> 00:00:29.382 -App per i social media in grado di riconoscere i volti -sulle nostre foto così possiamo aggiungere orecchie da coniglio. +9 +00:00:19.681 --> 00:00:22.400 +i siti di traduzione +che riconoscono la lingua parlata -00:00:29.458 --> 00:00:32.179 -Assistenti vocali -con cui possiamo parlare. Fantastico, vero? +10 +00:00:22.425 --> 00:00:23.994 +ancor prima di averla impostata, + +11 +00:00:24.019 --> 00:00:26.080 +i social network, capaci di riconoscere + +12 +00:00:26.105 --> 00:00:28.966 +il nostro viso nelle foto +per aggiungere delle orecchie di coniglio, + +13 +00:00:28.991 --> 00:00:31.234 +gli assistenti vocali, +con cui possiamo parlare. + +14 +00:00:31.259 --> 00:00:32.360 +Straordinario, no? + +15 +00:00:32.385 --> 00:00:33.879 +Diamo un'occhiata più da vicino. -00:00:32.497 --> 00:00:33.685 -Diamo un'occhiata più da vicino. \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid1-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid1-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..a03727ee2c115225eae8545aead1eefdc1dbec20 --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid1-sl.vtt @@ -0,0 +1,65 @@ +WEBVTT FILE + +1 +00:00:00.048 --> 00:00:02.715 +Kaj je umetna inteligenca? + +2 +00:00:02.982 --> 00:00:06.514 +Umetna inteligenca (UI) +je sklop računalniških orodij, + +3 +00:00:06.624 --> 00:00:08.271 +ki posnemajo aktivnosti, + +4 +00:00:08.359 --> 00:00:10.524 +ki smo jih doslej povezovali le +s človeškim umom. + +5 +00:00:10.549 --> 00:00:12.572 +Ponavadi gre za kognitivne aktivnosti. + +6 +00:00:12.669 --> 00:00:16.437 +UI lahko recimo prepozna, +kaj je na sliki, ali prevede besedilo. + +7 +00:00:16.656 --> 00:00:18.289 +UI je povsod okrog nas. + +8 +00:00:18.383 --> 00:00:20.540 +Telefoni prepoznajo obraze +na podobah, + +9 +00:00:20.565 --> 00:00:24.265 +spletni prevajalniki samodejno +prepoznajo jezik naše komunikacije. + +10 +00:00:24.361 --> 00:00:27.773 +Družbena omrežja +prepoznajo obraze na naših fotografijah + +11 +00:00:27.798 --> 00:00:29.506 +in jim dodajo zajčja ušesa. + +12 +00:00:29.548 --> 00:00:31.539 +Govorimo lahko +z virtualnimi asistenti. + +13 +00:00:31.587 --> 00:00:32.545 +A ni to super? + +14 +00:00:32.570 --> 00:00:33.715 +Poglejmo pobliže. + diff --git a/data/tuto1/vtt/tuto1-activite1-vid2-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid2-en.vtt index 5ba8ef06222273b20d947581a2edced18d433e1d..96be5c505651dbc956f53b1ef6b8ee6623ae6382 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid2-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid2-en.vtt @@ -1,39 +1,53 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:01.250 +1 +00:00:00.090 --> 00:00:01.131 Magic? -00:00:02.312 --> 00:00:05.660 -For a program to learn to recognise -images, you have to train it first. +2 +00:00:01.881 --> 00:00:06.335 +The first step in making a program learn +to recognise images is to train it. -00:00:06.014 --> 00:00:09.330 -This is what is known -as "machine learning." +3 +00:00:06.607 --> 00:00:09.940 +This is what we call machine learning. -00:00:09.992 --> 00:00:12.250 -We'll show it examples, -and tell it what they are. +4 +00:00:09.965 --> 00:00:12.552 +We'll show examples +by telling it what it is. -00:00:12.640 --> 00:00:15.312 -This is an image of a cat. -This is an image of a dog. +5 +00:00:12.590 --> 00:00:15.465 +Whether it's a picture of a cat or a dog, -00:00:15.375 --> 00:00:18.625 -We'll show it thousands -for each thing we want it to recognise. +6 +00:00:15.506 --> 00:00:17.173 +we'll show it thousands of examples -00:00:19.167 --> 00:00:21.417 -At the start it will make -a lot of mistakes. +7 +00:00:17.215 --> 00:00:18.506 +of each thing we want it to recognise. -00:00:21.458 --> 00:00:24.916 -But after seeing plenty of examples, -it will recognise an image of a cat, +8 +00:00:19.173 --> 00:00:21.340 +At first, it will make many mistakes, -00:00:24.937 --> 00:00:26.958 -even on a photo that it has never seen. +9 +00:00:21.381 --> 00:00:23.256 +but after seeing numerous examples, + +10 +00:00:23.298 --> 00:00:25.048 +it will be able to identify +a picture of a cat + +11 +00:00:25.090 --> 00:00:26.965 +even in a photo it has never seen. + +12 +00:00:27.006 --> 00:00:29.548 +Now we can train our own AI. -00:00:27.042 --> 00:00:29.583 -We're now going -to be able to train our own AI! \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid2-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid2-it.vtt old mode 100755 new mode 100644 index 920ac40059bf376ad9775acb9f8d343ff0e93a01..63183df65fa6a29450527765eb9bbf46e9233786 --- a/data/tuto1/vtt/tuto1-activite1-vid2-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid2-it.vtt @@ -1,39 +1,60 @@ -WEBVTT - -00:00:00.167 --> 00:00:01.250 -Magia? - -00:00:02.312 --> 00:00:05.660 -Per un programma che impara a riconoscere -le immagini, devi prima addestrarlo. - -00:00:06.014 --> 00:00:09.330 -Questo è ciò che è noto -come "apprendimento automatico". - -00:00:09.992 --> 00:00:12.250 -Gli mostreremo degli esempi, -e gli diremo cosa sono. +WEBVTT FILE + +1 +00:00:00.560 --> 00:00:01.856 +MAGIA? + +2 +00:00:01.881 --> 00:00:04.353 +Perché un programma impari +a riconoscere delle immagini, + +3 +00:00:04.378 --> 00:00:05.633 +è necessario addestrarlo. + +4 +00:00:05.658 --> 00:00:08.048 +È ciò che chiamiamo +"apprendimento automatico" + +5 +00:00:08.073 --> 00:00:09.940 +o "<i>machine learning</i>", in inglese. + +6 +00:00:09.965 --> 00:00:13.321 +Gli vengono mostrati degli esempi, +specificando di cosa si tratta: + +7 +00:00:13.346 --> 00:00:16.201 +questa è l'immagine di un gatto, +questa è l'immagine di un cane... + +8 +00:00:16.226 --> 00:00:19.676 +Gliene vengono mostrati migliaia +per ogni cosa che vogliamo che riconosca. -00:00:12.640 --> 00:00:15.312 -Questa è un'immagine di un gatto. -Questa è l'immagine di un cane. +9 +00:00:19.735 --> 00:00:21.582 +All'inizio, sbaglierà, e tanto, -00:00:15.375 --> 00:00:18.625 -Gliene mostreremo migliaia -per ogni cosa che vogliamo che riconosca. +10 +00:00:21.655 --> 00:00:23.256 +ma dopo aver visto molti esempi, -00:00:19.167 --> 00:00:21.417 -All'inizio farà -molti errori. +11 +00:00:23.281 --> 00:00:25.557 +sarà in grado di riconoscere +l'immagine di un gatto -00:00:21.458 --> 00:00:24.916 -Ma dopo aver visto molti esempi, -riconoscerà l'immagine di un gatto, +12 +00:00:25.582 --> 00:00:27.241 +anche in una foto che non ha mai visto. -00:00:24.937 --> 00:00:26.958 -anche su una foto che non ha mai visto. +13 +00:00:27.266 --> 00:00:29.813 +Adesso, possiamo addestrare la nostra IA. -00:00:27.042 --> 00:00:29.583 -Ora saremo in grado -essere in grado di addestrare la nostra IA! \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid2-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid2-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..27369c6e48ff241c459ae675e8b21ec6ec969956 --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid2-sl.vtt @@ -0,0 +1,58 @@ +WEBVTT FILE + +1 +00:00:00.191 --> 00:00:01.232 +Čarovnija? + +2 +00:00:01.881 --> 00:00:04.381 +Če želimo, +da program prepozna določeno podobo, + +3 +00:00:04.406 --> 00:00:06.335 +ga moramo tega najprej naučiti. + +4 +00:00:06.430 --> 00:00:08.195 +Temu pravimo strojno učenje. + +5 +00:00:08.220 --> 00:00:11.759 +Pokažemo mu primere +in za vsakega povemo, kaj predstavlja. + +6 +00:00:11.829 --> 00:00:13.907 +Naj gre za podobo mačke ali psa, + +7 +00:00:13.946 --> 00:00:16.727 +vsakič mu pokažemo +na tisoče primerov tistega, + +8 +00:00:16.794 --> 00:00:18.833 +kar hočemo, da se nauči prepoznati. + +9 +00:00:18.858 --> 00:00:20.716 +Na začetku se bo velikokrat zmotil, + +10 +00:00:20.741 --> 00:00:22.724 +ko pa si bo ogledal veliko +število primerov, + +11 +00:00:22.774 --> 00:00:24.687 +bo že znal prepoznati podobo mačke, + +12 +00:00:24.757 --> 00:00:26.981 +tudi na sliki, ki je ni še nikdar videl. + +13 +00:00:27.044 --> 00:00:29.586 +Začnemo lahko z učenjem svoje lastne UI. + diff --git a/data/tuto1/vtt/tuto1-activite1-vid3-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid3-en.vtt index 9712438c7a83f3ac56a5654d6f6169baadaab0c2..515827811d745178632e42693be849985e4933a5 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid3-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid3-en.vtt @@ -1,47 +1,72 @@ -WEBVTT +WEBVTT FILE -00:00:00.000 --> 00:00:02.225 -We just trained our first program! +1 +00:00:00.048 --> 00:00:02.506 +We have just trained our first programme. -00:00:02.708 --> 00:00:05.833 -Well done! -As you could see, it wasn't magic. +2 +00:00:02.548 --> 00:00:03.548 +Well done. -00:00:06.208 --> 00:00:09.751 -First, we told it what we were showing it. -Then we showed it examples of images. +3 +00:00:03.708 --> 00:00:06.511 +As we saw, +there's actually nothing magical about it. -00:00:10.000 --> 00:00:11.458 -That's the learning phase. +4 +00:00:06.536 --> 00:00:08.389 +First, we told it what we would show it, -00:00:11.789 --> 00:00:13.854 -We call the program -we trained "the model". +5 +00:00:08.414 --> 00:00:10.586 +and then we showed it some example images. -00:00:14.610 --> 00:00:17.790 +6 +00:00:10.633 --> 00:00:11.998 +This is the learning phase. + +7 +00:00:12.023 --> 00:00:14.497 +The programme being trained +is called a 'model'. + +8 +00:00:14.857 --> 00:00:18.065 It can now predict -the category an image belongs to. +which category an image belongs to. -00:00:18.242 --> 00:00:22.040 -Its prediction is still a statistic -approximation, hence the percentage. +9 +00:00:18.090 --> 00:00:20.798 +Its prediction +is still a statistical approximation, -00:00:22.458 --> 00:00:24.625 +10 +00:00:20.840 --> 00:00:22.131 +hence the percentage. + +11 +00:00:22.340 --> 00:00:24.915 According to its calculation, -there's more chance +there is a greater chance -00:00:24.687 --> 00:00:27.208 +12 +00:00:24.940 --> 00:00:27.690 that this image belongs -to one category over another. +to this category than another. + +13 +00:00:27.966 --> 00:00:29.590 +But can it detect everything? -00:00:27.994 --> 00:00:29.625 -But can it recognise everything? +14 +00:00:29.631 --> 00:00:32.173 +If we teach it to recognise cats, -00:00:29.917 --> 00:00:32.333 -If we teach it to recognise cats or dogs, +15 +00:00:32.215 --> 00:00:34.423 +could it identify lions or tigers? -00:00:32.416 --> 00:00:34.479 -can it recognise lions or tigers? +16 +00:00:34.465 --> 00:00:36.090 +Can our programme be wrong? -00:00:34.541 --> 00:00:36.083 -Can our program get it wrong? \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid3-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid3-it.vtt old mode 100755 new mode 100644 index fb73d9a2b9e39716f88ec22cb9879c4164ce1a05..7fc8cf2f0541a9d8c61c18df601eedcfd9416f99 --- a/data/tuto1/vtt/tuto1-activite1-vid3-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid3-it.vtt @@ -1,47 +1,76 @@ -WEBVTT +WEBVTT FILE -00:00:00.000 --> 00:00:02.225 -Abbiamo appena addestrato il nostro primo programma! +1 +00:00:00.020 --> 00:00:02.526 +ABBIAMO APPENA ADDESTRATO +IL NOSTRO PRIMO PROGRAMMA! -00:00:02.708 --> 00:00:05.833 -Ben fatto! -Come avete potuto vedere, non è stata una magia. +2 +00:00:02.551 --> 00:00:03.560 +Complimenti! -00:00:06.208 --> 00:00:09.751 -Per prima cosa, gli abbiamo detto cosa gli stavamo mostrando. -Poi gli abbiamo mostrato esempi di immagini. +3 +00:00:03.585 --> 00:00:05.980 +Come abbiamo potuto vedere, +non c'è nulla di magico. -00:00:10.000 --> 00:00:11.458 +4 +00:00:06.051 --> 00:00:08.428 +Prima, gli abbiamo detto +cosa gli avremmo mostrato + +5 +00:00:08.453 --> 00:00:10.722 +poi, gli abbiamo mostrato +immagini di esempio. + +6 +00:00:10.747 --> 00:00:12.414 Questa è la fase di apprendimento. -00:00:11.789 --> 00:00:13.854 -Chiamiamo il programma -che abbiamo addestrato "il modello". +7 +00:00:12.439 --> 00:00:15.023 +Chiamiamo "modello" +il programma che addestriamo. -00:00:14.610 --> 00:00:17.790 -Ora può predire -la categoria a cui appartiene un'immagine. +8 +00:00:15.048 --> 00:00:18.382 +Adesso è in grado di indovinare +a quale categoria appartiene un'immagine. -00:00:18.242 --> 00:00:22.040 -La sua previsione è ancora una statistica -approssimazione, da cui la percentuale. +9 +00:00:18.407 --> 00:00:20.941 +Le sue previsioni +restano approssimazioni statistiche, -00:00:22.458 --> 00:00:24.625 -Secondo il suo calcolo, -c'è più possibilità +10 +00:00:20.966 --> 00:00:22.435 +da qui le percentuali. -00:00:24.687 --> 00:00:27.208 -che questa immagine appartenga -ad una categoria piuttosto che ad un'altra. +11 +00:00:22.460 --> 00:00:24.977 +Secondo i suoi calcoli, +ci sono più probabilità -00:00:27.994 --> 00:00:29.625 +12 +00:00:25.002 --> 00:00:28.230 +che quell'immagine appartenga +a tale categoria piuttosto che a un'altra. + +13 +00:00:28.255 --> 00:00:29.669 Ma può riconoscere tutto? -00:00:29.917 --> 00:00:32.333 -Se gli insegniamo a riconoscere i gatti o i cani, +14 +00:00:29.769 --> 00:00:32.298 +Se lo addestriamo +a riconoscere dei cani o dei gatti, + +15 +00:00:32.323 --> 00:00:34.448 +potrà riconoscere dei leoni o delle tigri? -00:00:32.416 --> 00:00:34.479 -può riconoscere i leoni o le tigri? +16 +00:00:34.473 --> 00:00:36.506 +Il nostro programma potrebbe sbagliarsi? -00:00:34.541 --> 00:00:36.083 -Può il nostro programma sbagliare? diff --git a/data/tuto1/vtt/tuto1-activite1-vid3-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid3-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..0ed20c7437bd83e1cb0798d52a8fcc734a8d78f1 --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid3-sl.vtt @@ -0,0 +1,58 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.048 --> 00:00:02.506 +Uspešno smo usposobili svoj prvi program. + +00:00:02.548 --> 00:00:03.548 +Dobro opravljeno! + +00:00:03.840 --> 00:00:05.923 +Kot smo videli, +ne gre za nobeno čarovnijo. + +00:00:05.965 --> 00:00:08.006 +Najprej smo programu povedali, +kaj ga boom naučili, + +00:00:08.048 --> 00:00:09.673 +nato pa smo mu pokazali veliko število primerov. + +00:00:09.881 --> 00:00:11.590 +To je faza učenja. + +00:00:11.631 --> 00:00:13.840 +Takšnemu učečemu se programu pravimo 'model'. + +00:00:14.423 --> 00:00:17.631 +Zdaj zna že predvideti, +v katero kategorijo sodi določena podoba. + +00:00:18.090 --> 00:00:20.798 +Njegovo predvidevanje +je sicer še vedno statistični približek, + +00:00:20.840 --> 00:00:22.131 +izražen v odstotkih. + +00:00:22.340 --> 00:00:24.590 +Glede na njegove izračune +obstaja večja verjetnost, + +00:00:24.631 --> 00:00:27.381 +da ta slika sodi v to kategorijo +kot pa v kakšno drugo. + +00:00:27.715 --> 00:00:29.590 +Toda ali model res zazna vse? + +00:00:29.631 --> 00:00:32.173 +Če ga naučimo prepoznati mačke, + +00:00:32.215 --> 00:00:34.423 +ali bo znal prepoznati tudi leve in tigre? + +00:00:34.465 --> 00:00:36.090 +Se lahko naš program zmoti? + diff --git a/data/tuto1/vtt/tuto1-activite1-vid4-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid4-en.vtt index 80fb7353ff836030dacda553a4a1a20ebf04162e..adeae5a1fc1cb1d82291670db3d81becd02b1146 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid4-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid4-en.vtt @@ -1,36 +1,64 @@ -WEBVTT +WEBVTT FILE -00:00:00.521 --> 00:00:04.312 -Our program can only do -what it has been trained to do. +1 +00:00:00.173 --> 00:00:04.465 +Our programme can only do +what it has been trained to do! -00:00:04.708 --> 00:00:07.208 +2 +00:00:04.506 --> 00:00:07.256 The program can only recognise -what we've shown it. +what it has been shown. -00:00:07.527 --> 00:00:11.390 +3 +00:00:07.298 --> 00:00:09.453 If we teach it to recognise cats or dogs, -it won't be able to recognise lions. -00:00:11.458 --> 00:00:14.416 -But it can tell us -which category it is closer to. +4 +00:00:09.478 --> 00:00:11.506 +it won't be able to recognise lions, -00:00:14.500 --> 00:00:18.042 -Cats? It is only as smart -as we taught it to be. +5 +00:00:11.548 --> 00:00:14.465 +but it will be able to tell us +which categorie it is most like, -00:00:18.126 --> 00:00:21.226 -When we discover something new, -we don't know what it is straight away. +6 +00:00:14.506 --> 00:00:15.590 +in this case, cats. -00:00:21.672 --> 00:00:26.160 -But once we learn, we can recognise it +7 +00:00:16.131 --> 00:00:18.006 +It's not more intelligent +than what we teach it. + +8 +00:00:18.048 --> 00:00:19.506 +When we discover a new thing, + +9 +00:00:19.590 --> 00:00:21.465 +we don't know what it is at first, + +10 +00:00:21.506 --> 00:00:22.965 +but once we have learned it, + +11 +00:00:23.040 --> 00:00:26.039 +we are able to recognise it in different positions or contexts. -00:00:26.632 --> 00:00:28.250 -Is it the same for our program? +12 +00:00:26.124 --> 00:00:27.742 +Is it the same for our programme? -00:00:28.792 --> 00:00:32.390 +13 +00:00:27.804 --> 00:00:29.749 If we teach it to recognise lions, -will it recognise soft toy lions? \ No newline at end of file + +14 +00:00:29.774 --> 00:00:32.715 +will it be able +to recognise cuddly toy lions? + diff --git a/data/tuto1/vtt/tuto1-activite1-vid4-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid4-it.vtt old mode 100755 new mode 100644 index 49617f60b77eb865da633637bd707e741fe59835..ba005cdf72c6bfa8f616806243a43848d80ae91a --- a/data/tuto1/vtt/tuto1-activite1-vid4-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid4-it.vtt @@ -1,36 +1,65 @@ -WEBVTT +WEBVTT FILE -00:00:00.521 --> 00:00:04.312 -Il nostro programma può fare solo -ciò che è stato addestrato a fare. +1 +00:00:00.700 --> 00:00:04.423 +IL NOSTRO PROGRAMMA SA FARE +SOLO CIÒ PER CUI È STATO ADDESTRATO! -00:00:04.708 --> 00:00:07.208 -Il programma può riconoscere solo -quello che gli abbiamo mostrato. +2 +00:00:04.693 --> 00:00:07.748 +Il programma può riconoscere +solo ciò che gli è stato mostrato. -00:00:07.527 --> 00:00:11.390 -Se gli insegniamo a riconoscere i gatti o i cani, -non sarà in grado di riconoscere i leoni. +3 +00:00:07.773 --> 00:00:10.159 +Se lo si addestra +a riconoscere cani e gatti, -00:00:11.458 --> 00:00:14.416 -Ma può dirci -a quale categoria si avvicina. +4 +00:00:10.184 --> 00:00:11.846 +non potrà riconoscere dei leoni, -00:00:14.500 --> 00:00:18.042 -I gatti? È intelligente solo -quanto noi gli abbiamo insegnato ad esserlo. +5 +00:00:11.871 --> 00:00:14.557 +ma ci potrà dire +a quale categoria si avvicinano di più, -00:00:18.126 --> 00:00:21.226 -Quando scopriamo qualcosa di nuovo, -non sappiamo subito cosa sia. +6 +00:00:14.582 --> 00:00:15.584 +cioè ai gatti. -00:00:21.672 --> 00:00:26.160 -Ma una volta che abbiamo imparato, possiamo riconoscerla -in diverse posizioni o contesti. +7 +00:00:15.609 --> 00:00:17.762 +Non sa più di quello +che gli viene insegnato. -00:00:26.632 --> 00:00:28.250 -È lo stesso per il nostro programma? +8 +00:00:17.787 --> 00:00:19.402 +Quando scopriamo una cosa nuova, + +9 +00:00:19.427 --> 00:00:21.950 +neanche noi sappiamo subito +di cosa si tratta, + +10 +00:00:21.975 --> 00:00:23.451 +ma, una volta appreso cos'è, + +11 +00:00:23.476 --> 00:00:26.606 +siamo capaci di riconoscerla +in posizioni e contesti diversi. + +12 +00:00:26.631 --> 00:00:28.544 +Vale lo stesso per il nostro programma? + +13 +00:00:28.569 --> 00:00:30.539 +Se gli si insegna a riconoscere i leoni, + +14 +00:00:30.564 --> 00:00:32.759 +saprà riconoscere dei leoni di peluche? -00:00:28.792 --> 00:00:32.390 -Se gli insegniamo a riconoscere i leoni, -riconoscerà i leoni di peluche? diff --git a/data/tuto1/vtt/tuto1-activite1-vid4-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid4-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..cafb99f7b5120178efc4ecbde721088949b18ebd --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid4-sl.vtt @@ -0,0 +1,51 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.173 --> 00:00:04.423 +Naš program zna narediti samo to, +kar smo ga naučili! + +00:00:04.465 --> 00:00:07.215 +Program prepozna samo tisto, +kar smo mu pokazali. + +00:00:07.256 --> 00:00:09.881 +Če ga naučimo +prepoznati mačke ali pse, + +00:00:09.923 --> 00:00:11.465 +na podobi ne bo znal prepoznati leva, + +00:00:11.506 --> 00:00:14.423 +znal pa bo povedati +v katero kategorijo najverjetneje spada, + +00:00:14.465 --> 00:00:15.548 +torej med mačke. + +00:00:16.131 --> 00:00:18.006 +Inteligenten je le toliko, kolikor ga naučimo. + +00:00:18.048 --> 00:00:19.465 +Ko odkrijemo nekaj novega, + +00:00:19.548 --> 00:00:21.423 +tudi ljudje sprva ne vemo, za kaj gre. + +00:00:21.465 --> 00:00:22.965 +Ko pa se naučimo, + +00:00:23.048 --> 00:00:26.215 +znamo to stvar prepoznati tudi +v različnih drugih okoliščinah oz. kontekstih. + +00:00:26.506 --> 00:00:28.381 +Ali za naš program velja enako? + +00:00:28.673 --> 00:00:30.340 +Če ga naučimo prepoznati leva, + +00:00:30.423 --> 00:00:32.673 +ali bo znal razlikovati med pravo živaljo in plišasto igračo? + diff --git a/data/tuto1/vtt/tuto1-activite1-vid5-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid5-en.vtt index 2e6e2a9dff58f5cdbdacea019191c10534a12101..cd54f05a4b7b78159a46cfd3dc48f219509fba9b 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid5-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid5-en.vtt @@ -1,41 +1,63 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:01.429 -It can get things wrong! +1 +00:00:00.048 --> 00:00:01.631 +It may be wrong! -00:00:01.760 --> 00:00:03.178 -It is just a prediction. +2 +00:00:01.673 --> 00:00:03.340 +It's just a prediction. -00:00:03.992 --> 00:00:06.990 -Being able to recognise things -in different positions or contexts +3 +00:00:03.840 --> 00:00:05.906 +Recognising things in different positions -00:00:07.021 --> 00:00:08.541 -is called generalisation. +4 +00:00:05.931 --> 00:00:08.506 +or contexts is called generalisation, -00:00:08.583 --> 00:00:11.875 -That's what we try to do when we train -a program to recognise things. +5 +00:00:08.556 --> 00:00:09.806 +and that's what you try to do -00:00:12.218 --> 00:00:16.040 +6 +00:00:09.840 --> 00:00:12.841 +when you train a programme +to identify stuff. + +7 +00:00:12.872 --> 00:00:16.481 We are very good at generalising because we are quite approximate. -00:00:16.654 --> 00:00:19.104 +8 +00:00:16.506 --> 00:00:19.927 Our program is very powerful -because it is very precise. +because it is very accurate, -00:00:19.490 --> 00:00:21.367 -But it is less good at generalising. +9 +00:00:19.958 --> 00:00:22.068 +but it is not so good at generalising. -00:00:22.156 --> 00:00:26.660 +10 +00:00:22.161 --> 00:00:24.423 However, if we train it correctly -with thousands of varied examples, -00:00:27.047 --> 00:00:29.830 -in some cases, it can be -more precise than humans. +11 +00:00:24.465 --> 00:00:26.296 +with thousands of different examples, + +12 +00:00:26.321 --> 00:00:29.590 +it can become more precise +than a human being in certain cases. + +13 +00:00:29.840 --> 00:00:33.226 +Today, we have programs +that can read medical images + +14 +00:00:33.251 --> 00:00:35.840 +more reliably than humans. -00:00:29.875 --> 00:00:35.646 -Today, we have programs that can read -medical images more reliably than humans. \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid5-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid5-it.vtt old mode 100755 new mode 100644 index aa0c8997bb73329f2ba7a6b0f9caf9cb6f46c9f9..9985dda786b4402ad228e9b051e7b01c4d9c2109 --- a/data/tuto1/vtt/tuto1-activite1-vid5-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid5-it.vtt @@ -1,41 +1,65 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:01.429 -Può sbagliare le cose! +1 +00:00:00.048 --> 00:00:01.631 +SÌ, PUÒ SBAGLIARSI! -00:00:01.760 --> 00:00:03.178 -È solo una previsione. +2 +00:00:01.673 --> 00:00:03.340 +Non sono altro che previsioni. -00:00:03.992 --> 00:00:06.990 -Essere in grado di riconoscere le cose -in diverse posizioni o contesti +3 +00:00:03.418 --> 00:00:06.893 +L'essere in grado di riconoscere +le cose in posizioni o contesti diversi -00:00:07.021 --> 00:00:08.541 -si chiama generalizzazione. +4 +00:00:06.918 --> 00:00:08.523 +si chiama "generalizzazione", -00:00:08.583 --> 00:00:11.875 -Questo è ciò che cerchiamo di fare quando addestriamo -un programma a riconoscere le cose. +5 +00:00:08.548 --> 00:00:10.066 +ed è ciò che si cerca di fare -00:00:12.218 --> 00:00:16.040 +6 +00:00:10.091 --> 00:00:12.695 +quando si addestra un programma +a riconoscere delle cose. + +7 +00:00:12.720 --> 00:00:16.326 Siamo molto bravi a generalizzare -perché siamo abbastanza approssimativi. +perché siamo alquanto approssimativi. -00:00:16.654 --> 00:00:19.104 +8 +00:00:16.351 --> 00:00:19.645 Il nostro programma è molto potente -perché è molto preciso. +perché è molto preciso, + +9 +00:00:19.670 --> 00:00:21.697 +ma quindi meno bravo a generalizzare. + +10 +00:00:21.722 --> 00:00:24.029 +Tuttavia, se lo si addestra correttamente, + +11 +00:00:24.054 --> 00:00:26.149 +con migliaia e migliaia di esempi diversi, -00:00:19.490 --> 00:00:21.367 -Ma è meno bravo a generalizzare. +12 +00:00:26.174 --> 00:00:29.301 +può, in certi casi, essere +più preciso dell'essere umano. -00:00:22.156 --> 00:00:26.660 -Tuttavia, se lo addestriamo correttamente -con migliaia di esempi diversi, +13 +00:00:29.326 --> 00:00:32.541 +Al giorno d'oggi, infatti, esistono +dei programmi in grado di leggere -00:00:27.047 --> 00:00:29.830 -in alcuni casi, può essere -più preciso degli umani. +14 +00:00:32.566 --> 00:00:35.866 +le immagini diagnostiche +in modo più affidabile degli umani. -00:00:29.875 --> 00:00:35.646 -Oggi, abbiamo programmi che possono leggere -immagini mediche in modo più affidabile degli umani. diff --git a/data/tuto1/vtt/tuto1-activite1-vid5-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid5-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..4a3a9c43850012ed74cc5b8d6a9f36f47689724e --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid5-sl.vtt @@ -0,0 +1,51 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.048 --> 00:00:01.631 +Ja, stroj se lahko zmoti! + +00:00:01.673 --> 00:00:03.340 +Kar počne, je zgolj predvidevanje. + +00:00:03.840 --> 00:00:06.173 +Prepoznavanje stvari v različnih okoliščinah + +00:00:06.215 --> 00:00:08.506 +ali kontekstih se imenuje generalizacija. + +00:00:08.548 --> 00:00:09.798 +K temu stremite, + +00:00:09.840 --> 00:00:11.840 +ko program učite, +kako naj prepozna določeno stvar. + +00:00:11.881 --> 00:00:16.048 +Ljudje smo v generalizaciji dobri, +ker težimo k približkom. + +00:00:16.506 --> 00:00:19.090 +Naš program pa je sicer zelo zmogljiv, +saj je izjemno natančen, + +00:00:19.131 --> 00:00:21.340 +generalizacija pa mu ne gre tako dobro. + +00:00:21.881 --> 00:00:24.423 +Vendar, če ga pravilno učimo, + +00:00:24.465 --> 00:00:26.840 +tako da mu pokažemo na tisoče različnih primerov, + +00:00:26.881 --> 00:00:29.590 +je lahko v nekaterih primerih +bistveno natančnejši od ljudi. + +00:00:29.840 --> 00:00:34.048 +Danes v medicini obstajajo programi, + +00:00:34.090 --> 00:00:35.840 +ki so pri interpretiranju izvidov +uspešnejši kot ljudje. + diff --git a/data/tuto1/vtt/tuto1-activite1-vid6-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid6-en.vtt index 29ffe2ab53c6a0301ca1171f887a289eaa41fc2f..d0aea7cee4d4a14b6c286f8f36682424c740e0a1 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid6-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid6-en.vtt @@ -1,32 +1,43 @@ -WEBVTT +WEBVTT FILE -00:00:00.130 --> 00:00:02.054 +1 +00:00:00.046 --> 00:00:02.006 What can we do with this program? -00:00:02.487 --> 00:00:05.729 -Now we know +2 +00:00:02.423 --> 00:00:05.798 +Now that we have understood how to train artificial intelligence, -00:00:05.791 --> 00:00:08.125 -we can train it with whatever we want. +3 +00:00:05.840 --> 00:00:08.173 +we can teach it to do whatever we want. -00:00:08.740 --> 00:00:10.778 +4 +00:00:08.590 --> 00:00:10.881 Can I train a program to tell the difference -00:00:10.812 --> 00:00:12.385 +5 +00:00:10.923 --> 00:00:12.715 between my cup and my glass? -00:00:12.917 --> 00:00:15.099 -Between a closed hand and an open hand? +6 +00:00:12.763 --> 00:00:15.097 +Or between my closed hand +and my open hand? -00:00:15.658 --> 00:00:17.792 -Between my blue shirt and a red T-shirt? +7 +00:00:15.423 --> 00:00:17.756 +My blue shirt and a red t-shirt? -00:00:17.875 --> 00:00:21.242 -You can choose your two categories +8 +00:00:17.798 --> 00:00:21.465 +You choose your two categories and your ten examples for each. -00:00:21.750 --> 00:00:24.195 -Make sure that -your two categories are distinct. \ No newline at end of file +9 +00:00:21.715 --> 00:00:24.090 +Make sure +your two categories are distinct. + diff --git a/data/tuto1/vtt/tuto1-activite1-vid6-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid6-it.vtt old mode 100755 new mode 100644 index 893c35a3dce937e2f66789ae877c587c79862226..02a92373dee352a0a18f90a283d1b672d01c0f64 --- a/data/tuto1/vtt/tuto1-activite1-vid6-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid6-it.vtt @@ -1,32 +1,40 @@ -WEBVTT +WEBVTT FILE -00:00:00.130 --> 00:00:02.054 -Cosa possiamo fare con questo programma? +1 +00:00:00.048 --> 00:00:02.381 +COSA SI PUÒ FARE CON QUESTO PROGRAMMA? -00:00:02.487 --> 00:00:05.729 -Ora sappiamo -come addestrare l'intelligenza artificiale, +2 +00:00:02.423 --> 00:00:05.968 +Ora che abbiamo capito come addestrare +un'intelligenza artificiale, -00:00:05.791 --> 00:00:08.125 -possiamo addestrarla con qualsiasi cosa vogliamo. +3 +00:00:05.993 --> 00:00:08.326 +possiamo addestrarla +con quello che vogliamo. -00:00:08.740 --> 00:00:10.778 +4 +00:00:08.924 --> 00:00:12.530 Posso addestrare un programma -per capire la differenza +a distinguere una tazza da un bicchiere? -00:00:10.812 --> 00:00:12.385 -tra la mia tazza e il mio bicchiere? +5 +00:00:12.896 --> 00:00:15.230 +O la mia mano chiusa +dalla mia mano aperta? -00:00:12.917 --> 00:00:15.099 -Tra una mano chiusa e una mano aperta? +6 +00:00:15.548 --> 00:00:17.937 +O una camicetta blu da una T-shirt rossa? -00:00:15.658 --> 00:00:17.792 -Tra la camicia blu e la maglietta rossa? +7 +00:00:17.962 --> 00:00:21.306 +Scegli tu due categorie +e dieci esempi per ciascuna di esse. -00:00:17.875 --> 00:00:21.242 -Potete scegliere le vostre due categorie -e i vostri dieci esempi per ciascuna. +8 +00:00:21.331 --> 00:00:24.226 +Assicurati che le due categorie +siano ben distinte. -00:00:21.750 --> 00:00:24.195 -Assicuratevi che -le vostre due categorie siano distinte. \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid6-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid6-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..eb10ab3433f575fdefbc9c86fc71b5b112440bb5 --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid6-sl.vtt @@ -0,0 +1,35 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.048 --> 00:00:02.006 +Kaj lahko počnemo s takšnim programom? + +00:00:02.423 --> 00:00:05.798 +Zdaj ko razumemo, +kako učiti umetno inteligenco, + +00:00:05.840 --> 00:00:08.173 +jo lahko naučimo česarkoli. + +00:00:08.590 --> 00:00:10.881 +Lahko program naučim, + +00:00:10.923 --> 00:00:12.715 +da prepozna razliko +med skodelico in kozarcem? + +00:00:12.756 --> 00:00:15.090 +Ali med pestjo in odprto dlanjo? + +00:00:15.423 --> 00:00:17.756 +Med mojo modro srajco +in rdečo majico s kratkimi rokavi? + +00:00:17.798 --> 00:00:21.465 +Izberite dve kategoriji +in deset primerov za vsako. + +00:00:21.715 --> 00:00:24.090 +Prepričajte se, da sta izbrani kategoriji raznoliki. + diff --git a/data/tuto1/vtt/tuto1-activite1-vid7-en.vtt b/data/tuto1/vtt/tuto1-activite1-vid7-en.vtt index 545d647ced54396c1404e504a5551c9de249f11b..1bad78465d083eadf16b9108c2dd288d6eb2485c 100644 --- a/data/tuto1/vtt/tuto1-activite1-vid7-en.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid7-en.vtt @@ -1,75 +1,120 @@ -WEBVTT +WEBVTT FILE -00:00:00.125 --> 00:00:02.352 -Impressive! But how is it useful? +1 +00:00:00.131 --> 00:00:02.215 +Impressive, but what is it for? -00:00:02.583 --> 00:00:04.917 -Impressive, right? We agree. +2 +00:00:02.506 --> 00:00:03.631 +Impressive, right? -00:00:05.001 --> 00:00:07.200 -The program doesn't really see -our categories. +3 +00:00:03.673 --> 00:00:04.965 +All right, we agree. -00:00:07.469 --> 00:00:10.521 -But it associates the label we chose -to the example we showed it. +4 +00:00:05.006 --> 00:00:07.298 +The program doesn't see our categories, -00:00:10.562 --> 00:00:13.208 -This ability to recognise things -can be very useful. +5 +00:00:07.340 --> 00:00:10.506 +but it associates the label we've chosen +with the examples we show it. -00:00:13.445 --> 00:00:15.910 -We're finding more -and more AI in our daily lives. +6 +00:00:10.840 --> 00:00:13.381 +This ability to identify things +can be very useful, -00:00:15.994 --> 00:00:19.910 -It lets us automatically translate text, -communicate with voice assistants - -00:00:20.210 --> 00:00:22.807 -or even improve medical diagnoses. - -00:00:23.083 --> 00:00:26.917 -Computer engineers even use it -to try and build autonomous cars! - -00:00:27.000 --> 00:00:30.146 -But many uses are still to be invented -to make the world of tomorrow - -00:00:30.208 --> 00:00:32.958 -fairer, simpler. -more beautiful and more sustainable. - -00:00:33.042 --> 00:00:36.333 -Helping people -with disabilities, for example, +7 +00:00:13.423 --> 00:00:17.011 +and AIs are becoming increasingly common +in our day-to-day lives. -00:00:36.417 --> 00:00:39.208 -with applications -that describe the environment +8 +00:00:17.043 --> 00:00:19.293 +It can automatically translate text, -00:00:39.292 --> 00:00:40.708 -for people with vision impairments, - -00:00:40.792 --> 00:00:43.213 -or allowing paralysed people to write, - -00:00:43.297 --> 00:00:48.166 -making work simpler and more interesting, -by automating some repetitive tasks. - -00:00:48.250 --> 00:00:53.792 -reducing climate change by making -more accurate predictions for the future. - -00:00:54.109 --> 00:00:58.720 -What about us? Now you know what AI is, -but what else can we do with it? +9 +00:00:19.318 --> 00:00:21.173 +communicate with voice assistants -00:00:59.250 --> 00:01:01.739 +10 +00:00:21.215 --> 00:00:22.881 +or improve medical diagnoses. + +11 +00:00:22.923 --> 00:00:25.423 +Computer scientists are also using it + +12 +00:00:25.465 --> 00:00:26.965 +to try to build autonomous cars, + +13 +00:00:27.073 --> 00:00:30.479 +but many uses are still to be invented +for the world of tomorrow, + +14 +00:00:30.565 --> 00:00:32.401 +which will be more beautiful, fairer, + +15 +00:00:32.426 --> 00:00:33.943 +more sustainable and simpler. + +16 +00:00:33.975 --> 00:00:36.559 +Helping people with reduced autonomy, +for example, + +17 +00:00:36.584 --> 00:00:38.173 +by developing applications + +18 +00:00:38.215 --> 00:00:40.631 +that can describe their surroundings +by seeing us + +19 +00:00:40.673 --> 00:00:43.365 +or enabling paralysed people +to write text. + +20 +00:00:43.432 --> 00:00:45.993 +Making work easier and more interesting + +21 +00:00:46.018 --> 00:00:48.273 +by automating certain repetitive tasks. + +22 +00:00:48.607 --> 00:00:50.076 +Limiting global warming + +23 +00:00:50.101 --> 00:00:53.756 +by allowing more accurate predictions +of the future. + +24 +00:00:54.048 --> 00:00:56.256 +Now that we know what AI is, + +25 +00:00:56.298 --> 00:00:57.885 +what else can we do with it? + +26 +00:00:58.120 --> 00:01:00.620 What solutions can we invent -for the world of tomorrow? +for the future? + +27 +00:01:00.979 --> 00:01:04.173 +How can we use it +in our day-to-day lives to help us? -00:01:01.840 --> 00:01:04.229 -How can we use it every day to help us? \ No newline at end of file diff --git a/data/tuto1/vtt/tuto1-activite1-vid7-it.vtt b/data/tuto1/vtt/tuto1-activite1-vid7-it.vtt old mode 100755 new mode 100644 index 41ba421fbaa10a57cda9a2a50a49eddcfa8f7114..2e8d52e4f49b11ce499cee4789c1ca05f829b83a --- a/data/tuto1/vtt/tuto1-activite1-vid7-it.vtt +++ b/data/tuto1/vtt/tuto1-activite1-vid7-it.vtt @@ -1,75 +1,122 @@ -WEBVTT +WEBVTT FILE -00:00:00.125 --> 00:00:02.352 -Impressionante! Ma come è utile? +1 +00:00:00.131 --> 00:00:02.465 +INCREDIBILE! MA A CHE SERVE? -00:00:02.583 --> 00:00:04.917 -Impressionante, vero? Siamo d'accordo. +2 +00:00:02.506 --> 00:00:03.573 +Incredibile, no? -00:00:05.001 --> 00:00:07.200 -Il programma non vede davvero -le nostre categorie. +3 +00:00:03.598 --> 00:00:04.765 +Beh, siamo d'accordo. -00:00:07.469 --> 00:00:10.521 -Ma associa l'etichetta che abbiamo scelto -all'esempio che gli abbiamo mostrato. +4 +00:00:04.790 --> 00:00:07.315 +Il programma non riconosce davvero +le nostre categorie, -00:00:10.562 --> 00:00:13.208 -Questa capacità di riconoscere le cose -può essere molto utile. - -00:00:13.445 --> 00:00:15.910 -Stiamo trovando sempre più -IA nella nostra vita quotidiana. - -00:00:15.994 --> 00:00:19.910 -Ci permette di tradurre automaticamente il testo, -comunicare con gli assistenti vocali - -00:00:20.210 --> 00:00:22.807 -o persino migliorare le diagnosi mediche. - -00:00:23.083 --> 00:00:26.917 -Gli ingegneri informatici lo usano anche -per provare a costruire auto autonome! - -00:00:27.000 --> 00:00:30.146 -Ma molti usi sono ancora da inventare -per rendere il mondo di domani - -00:00:30.208 --> 00:00:32.958 -più giusto, più semplice. -più bello e più sostenibile. - -00:00:33.042 --> 00:00:36.333 -Aiutare le persone -con disabilità, per esempio, +5 +00:00:07.340 --> 00:00:10.531 +ma associa l'etichetta che abbiamo scelto +agli esempi che gli mostriamo. -00:00:36.417 --> 00:00:39.208 -con applicazioni -che descrivono l'ambiente - -00:00:39.292 --> 00:00:40.708 -per persone con problemi di vista, - -00:00:40.792 --> 00:00:43.213 -o per permettere alle persone paralizzate di scrivere, - -00:00:43.297 --> 00:00:48.166 -rendendo il lavoro più semplice e interessante, -automatizzando alcuni compiti ripetitivi. - -00:00:48.250 --> 00:00:53.792 -ridurre il cambiamento climatico facendo -previsioni più accurate per il futuro. - -00:00:54.109 --> 00:00:58.720 -E noi? Ora sai cos'è l'IA, -ma cos'altro possiamo fare con essa? - -00:00:59.250 --> 00:01:01.739 -Quali soluzioni possiamo inventare +6 +00:00:10.556 --> 00:00:13.832 +Questa capacità di riconoscere le cose +può risultare molto utile, + +7 +00:00:13.857 --> 00:00:17.206 +infatti troviamo sempre più IA +nella nostra vita quotidiana. + +8 +00:00:17.231 --> 00:00:19.506 +Permette di tradurre +automaticamente testi, + +9 +00:00:19.531 --> 00:00:21.654 +di comunicare con degli assistenti vocali, + +10 +00:00:21.679 --> 00:00:23.847 +o addirittura di migliorare +le diagnosi mediche. + +11 +00:00:23.872 --> 00:00:27.948 +Gli informatici la usano anche per provare +a costruire auto a guida autonoma, + +12 +00:00:27.973 --> 00:00:30.369 +ma sono numerosi +gli utilizzi ancora da inventare + +13 +00:00:30.394 --> 00:00:32.708 +per il mondo del domani, +più bello, più giusto, + +14 +00:00:32.733 --> 00:00:34.530 +più sostenibile e più semplice. + +15 +00:00:34.555 --> 00:00:36.202 +Aiutare le persone con disabilità, + +16 +00:00:36.227 --> 00:00:38.362 +ad esempio, sviluppando applicazioni + +17 +00:00:38.387 --> 00:00:41.315 +in grado di descrivere l'ambiente +che circonda i non vedenti, + +18 +00:00:41.340 --> 00:00:44.461 +o di permettere a una persona paralizzata +di scrivere un testo. + +19 +00:00:44.486 --> 00:00:46.767 +Rendere il lavoro +più semplice e più stimolante, + +20 +00:00:46.792 --> 00:00:48.900 +automatizzando i compiti più ripetitivi. + +21 +00:00:49.040 --> 00:00:50.822 +Limitare il riscaldamento climatico + +22 +00:00:50.847 --> 00:00:54.106 +permettendo, ad esempio, +di fare previsioni più precise sul futuro. + +23 +00:00:54.229 --> 00:00:56.309 +E noi, ora che sappiamo cos'è l'IA, + +24 +00:00:56.334 --> 00:00:58.596 +che altro possiamo immaginare +di fare con essa? + +25 +00:00:58.621 --> 00:01:01.406 +Che soluzioni possiamo inventare per il mondo di domani? -00:01:01.840 --> 00:01:04.229 -Come possiamo usarlo ogni giorno per aiutarci? +26 +00:01:01.431 --> 00:01:04.460 +Come possiamo sfruttarla nel quotidiano +per esserci d'aiuto? + diff --git a/data/tuto1/vtt/tuto1-activite1-vid7-sl.vtt b/data/tuto1/vtt/tuto1-activite1-vid7-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..fa557274959d44f2ccee8bbb01fd0a30a29d2b82 --- /dev/null +++ b/data/tuto1/vtt/tuto1-activite1-vid7-sl.vtt @@ -0,0 +1,95 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.131 --> 00:00:02.215 +Izjemno! Ampak čemu služi? + +00:00:02.506 --> 00:00:03.631 +Res je izjemno, kajne? + +00:00:03.673 --> 00:00:04.965 +Ja, saj se strinjamo. + +00:00:05.006 --> 00:00:07.298 +Program v resnici +ne prepozna naših kategorij, + +00:00:07.340 --> 00:00:10.506 +vendar jih poveže z oznakami (opisi), +s katerimi smo opremili posamezne primere. + +00:00:10.840 --> 00:00:13.381 +Sposobnost prepoznavanja stvari +je lahko zelo uporabna, + +00:00:13.423 --> 00:00:15.923 +in umetna inteligenca +je v naših življenjih vse bolj prisotna. + +00:00:15.965 --> 00:00:18.131 +Samodejno lahko prevede besedilo, + +00:00:18.173 --> 00:00:21.173 +se sporazumeva z virtualnimi asistenti, + +00:00:21.215 --> 00:00:22.881 +ali izboljšuje ustreznost zdravstvenih diagnoz. + +00:00:22.923 --> 00:00:25.423 +Računalničarji UI uporabljajo tudi + +00:00:25.465 --> 00:00:26.965 +pri zasnovi samovozečih avtomobilov, + +00:00:27.006 --> 00:00:29.298 +v prihodnosti pa bomo odkrivali +še veliko drugih načinov uporabe UI, + +00:00:29.340 --> 00:00:31.548 +zaradi katerih bo svet lepši, pravičnejši, + +00:00:31.590 --> 00:00:33.006 +bolj trajnosten in preprostejši. + +00:00:33.048 --> 00:00:35.173 +Z UI si bodo lahko pomagali invalidi, + +00:00:35.215 --> 00:00:38.173 +na primer z aplikacijami + +00:00:38.215 --> 00:00:40.631 +za opisovanje okolice + +00:00:40.673 --> 00:00:42.923 +ali za pretvorbo govora v besedilo. + +00:00:42.965 --> 00:00:45.798 +UI delo nam delo olajša in popestri + +00:00:45.840 --> 00:00:48.090 +z avtomatiziranjem +določenih ponavljajočih se opravil. + +00:00:48.298 --> 00:00:51.256 +Z zagotavljanjem +natančnejših napovedi za prihodnost + +00:00:51.298 --> 00:00:53.756 +lahko pomaga tudi pri +omejevanju vplivov globalnega segrevanja. + +00:00:54.048 --> 00:00:56.256 +Kaj še lahko počnemo z umetno inteligenco zdaj, + +00:00:56.298 --> 00:00:58.881 +ko vemo, kaj to je? + +00:00:58.923 --> 00:01:01.881 +Kakšnih rešitev +se bomo domislili za prihodnost? + +00:01:01.923 --> 00:01:04.173 +Kako si lahko z UI pomagamo +v vsakdanjem življenju? + diff --git a/data/tuto2/vtt/tuto2-activite1-vid1-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid1-en.vtt index 5f7c5175b30d00eb6d28b369668cd7ccf47fb29b..e7a65f6b93e28684c7106b283ac83ca6a1adc233 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid1-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid1-en.vtt @@ -1,41 +1,52 @@ -WEBVTT +WEBVTT FILE -00:00:00.333 --> 00:00:02.031 +1 +00:00:00.090 --> 00:00:02.048 Algorithms and data. -00:00:02.370 --> 00:00:05.187 -Today, when we talk about AI -or artificial intelligence, +2 +00:00:02.256 --> 00:00:05.678 +Today, when we talk +about AI or artificial intelligence, -00:00:05.229 --> 00:00:07.542 -we're often talking +3 +00:00:05.703 --> 00:00:08.396 +we are most often talking about machine learning. -00:00:07.736 --> 00:00:10.403 -Unlike algorithms, -which were used previously +4 +00:00:08.421 --> 00:00:10.546 +Unlike previous algorithms, -00:00:10.729 --> 00:00:14.375 -and which involved describing -an operation step-by-step, +5 +00:00:10.571 --> 00:00:14.256 +which were a step-by-step description +of how to perform an operation, -00:00:14.792 --> 00:00:16.792 -a bit like a recipe, +6 +00:00:14.367 --> 00:00:15.967 +rather like a recipe, -00:00:16.875 --> 00:00:20.312 -machine learning involves -training a program +7 +00:00:16.295 --> 00:00:19.359 +machine learning consists +of training a programme -00:00:20.363 --> 00:00:22.218 -to make predictions from data. +8 +00:00:19.384 --> 00:00:21.453 +to make predictions based on data. -00:00:22.654 --> 00:00:26.200 -We use it, for example, -to predict what a user will like +9 +00:00:22.536 --> 00:00:25.750 +For example, +it is used to predict a user's likes -00:00:26.229 --> 00:00:28.562 -based on what they have -already liked or viewed. +10 +00:00:25.775 --> 00:00:28.281 +based on +what they have already liked or watched. + +11 +00:00:28.954 --> 00:00:29.937 +Let's test it. -00:00:28.792 --> 00:00:29.875 -Let's test it out! \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid1-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid1-it.vtt old mode 100755 new mode 100644 index bd21502c5a258c15969b8dc9a08b4a5c43b6cf68..cfbb5f4f5287fa410ed347cd14f0c4523818eaf2 --- a/data/tuto2/vtt/tuto2-activite1-vid1-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid1-it.vtt @@ -1,41 +1,57 @@ -WEBVTT +WEBVTT FILE -00:00:00.333 --> 00:00:02.031 -Algoritmi e dati. +1 +00:00:00.399 --> 00:00:02.100 +ALGORITMI E DATI -00:00:02.370 --> 00:00:05.187 -Oggi, quando parliamo di AI -o intelligenza artificiale, +2 +00:00:02.207 --> 00:00:06.100 +Al giorno d'oggi, quando si parla +d'IA o d'intelligenza artificiale, -00:00:05.229 --> 00:00:07.542 -stiamo spesso parlando +3 +00:00:06.126 --> 00:00:08.817 +il più delle volte si parla di apprendimento automatico. -00:00:07.736 --> 00:00:10.403 -A differenza degli algoritmi, -che erano usati in precedenza +4 +00:00:08.842 --> 00:00:11.389 +Al contrario degli algoritmi +utilizzati finora, -00:00:10.729 --> 00:00:14.375 -e che implicavano la descrizione -un'operazione passo dopo passo, +5 +00:00:11.414 --> 00:00:14.637 +che descrivevano passo dopo passo +come effettuare un'operazione, -00:00:14.792 --> 00:00:16.792 -un po' come una ricetta, +6 +00:00:14.662 --> 00:00:16.507 +un po' come una ricetta di cucina, -00:00:16.875 --> 00:00:20.312 -l'apprendimento automatico comporta -l'addestramento di un programma +7 +00:00:16.532 --> 00:00:19.794 +l'apprendimento automatico +consiste nell'addestrare un programma -00:00:20.363 --> 00:00:22.218 -per fare previsioni dai dati. +8 +00:00:19.819 --> 00:00:22.028 +a fare delle previsioni +sulla base di dati. -00:00:22.654 --> 00:00:26.200 -Lo usiamo, per esempio, -per predire cosa piacerà ad un utente +9 +00:00:22.053 --> 00:00:23.441 +Può servire, ad esempio, -00:00:26.229 --> 00:00:28.562 -in base a ciò che gli è -già piaciuto o visto. +10 +00:00:23.466 --> 00:00:25.588 +a prevedere cosa può piacere a un utente, + +11 +00:00:25.613 --> 00:00:28.939 +in base a cosa gli è piaciuto +fino ad allora o a cosa ha guardato. + +12 +00:00:28.964 --> 00:00:29.973 +Proviamo. -00:00:28.792 --> 00:00:29.875 -Mettiamolo alla prova! \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid1-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid1-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..4b622f68556b744fd3c187f0a60e00ef315cd0d8 --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid1-sl.vtt @@ -0,0 +1,42 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.090 --> 00:00:02.048 +Algoritmi in podatki. + +00:00:02.256 --> 00:00:05.298 +Ko danes govorimo +o umetni inteligenci, + +00:00:05.340 --> 00:00:07.506 +imamo večinoma v mislih strojno učenje. + +00:00:07.548 --> 00:00:10.340 +V nasprotju z dosedanjimi algoritmi, + +00:00:10.715 --> 00:00:14.215 +ki kakor kuharski recept +s točno določenim zaporedjem korakov opisujejo, + +00:00:14.756 --> 00:00:16.840 +kako izvesti določeno opravilo, + +00:00:16.881 --> 00:00:20.131 +je bistvo strojnega učenja v tem, +da program naučimo predvidevanja + +00:00:20.173 --> 00:00:22.131 +na podlagi podatkov. + +00:00:22.631 --> 00:00:26.340 +Na primer, program predvidi, kaj bo uporabniku všeč + +00:00:26.381 --> 00:00:28.756 +na podlagi tega, +kar mu je bilo všeč v preteklosti +ali na podlagi že ogledanih vsebin. + +00:00:28.798 --> 00:00:29.756 +Preizkusimo. + diff --git a/data/tuto2/vtt/tuto2-activite1-vid2-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid2-en.vtt index ae6399e1abb9deaa5ade8d2d7761cb97a56182ae..276a15e98b224791daa5d424cabe2046343a540e 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid2-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid2-en.vtt @@ -1,44 +1,70 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:02.757 -Sexist? What if it is our data? +1 +00:00:00.090 --> 00:00:01.131 +Sexist? -00:00:03.250 --> 00:00:06.250 -You surely noticed +2 +00:00:01.156 --> 00:00:02.718 +What if it was our data... + +3 +00:00:02.743 --> 00:00:05.062 +{\an5}You may have noticed that our model recognised -00:00:06.291 --> 00:00:10.390 -everyone with long hair as women -and everyone with short hair as men. +4 +00:00:05.087 --> 00:00:07.109 +all people with long hair as women + +5 +00:00:07.178 --> 00:00:09.101 +and all those with short hair as men. + +6 +00:00:09.126 --> 00:00:10.335 +Without realising it, + +7 +00:00:10.360 --> 00:00:12.407 +we provided it with data that was sorted -00:00:10.917 --> 00:00:15.292 -Without realising, we provided data -that was sorted by criteria +8 +00:00:12.432 --> 00:00:15.743 +{\an5}according to criteria +other than those we had defined. -00:00:15.376 --> 00:00:16.751 -other than what we had defined. +9 +00:00:15.768 --> 00:00:19.666 +{\an5}How we sorted the data was influenced +by our perception of the problem. -00:00:17.432 --> 00:00:20.410 -The data sorting was influenced -by our perception of the issue. +10 +00:00:19.691 --> 00:00:22.557 +{\an5}When this happens, +we say the data is biased. -00:00:20.836 --> 00:00:23.660 -When that happens, -we say that the data is biased. +11 +00:00:22.582 --> 00:00:25.361 +{\an5}AI algorithms have been around +for a long time, -00:00:23.917 --> 00:00:26.080 -AI algorithms have existed for a long time +12 +00:00:25.386 --> 00:00:28.769 +{\an5}but they didn't work so well +because we lacked labelled data. -00:00:26.322 --> 00:00:29.267 -but they didn't work as well -because we don't have labelled data. +13 +00:00:28.794 --> 00:00:31.527 +{\an5}Today, +data is available in large quantities. -00:00:29.739 --> 00:00:31.994 -Today, a lot of data is available. +14 +00:00:31.552 --> 00:00:33.796 +That's why AI is so widespread. -00:00:32.429 --> 00:00:34.410 -And that's why AI is so widespread. +15 +00:00:33.821 --> 00:00:38.250 +{\an5}However, we have to be careful +because this data can contain biases. -00:00:34.750 --> 00:00:37.817 -But you should be careful -because the data may be biased. \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid2-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid2-it.vtt old mode 100755 new mode 100644 index dd077b41232030f2604f9b8bef1b083c1b77b9ac..7c30f4affd727bedba5769122cbfc1d0825361d9 --- a/data/tuto2/vtt/tuto2-activite1-vid2-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid2-it.vtt @@ -1,44 +1,69 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:02.757 -Sessista? E se fossero i nostri dati? +1 +00:00:00.090 --> 00:00:02.965 +SESSISTA? E SE FOSSERO I NOSTRI DATI... -00:00:03.250 --> 00:00:06.250 -Avrete sicuramente notato -che il nostro modello ha riconosciuto +2 +00:00:03.006 --> 00:00:05.413 +Sicuramente avrai potuto notare +che il nostro modello -00:00:06.291 --> 00:00:10.390 -tutti quelli con i capelli lunghi come donne -e tutti quelli con i capelli corti come uomini. +3 +00:00:05.438 --> 00:00:08.440 +riconosceva tutte le persone +con i capelli lunghi come donne -00:00:10.917 --> 00:00:15.292 -Senza rendercene conto, abbiamo fornito dati -che erano ordinati per criteri +4 +00:00:08.465 --> 00:00:10.748 +e tutte quelle con i capelli corti +come uomini. -00:00:15.376 --> 00:00:16.751 -diversi da quelli che avevamo definito. +5 +00:00:10.773 --> 00:00:12.002 +Senza rendercene conto, -00:00:17.432 --> 00:00:20.410 +6 +00:00:12.027 --> 00:00:13.182 +gli abbiamo fornito dei dati + +7 +00:00:13.207 --> 00:00:16.982 +organizzati secondo criteri diversi +da quelli che noi avevamo definito. + +8 +00:00:17.007 --> 00:00:20.936 L'ordinamento dei dati è stato influenzato dalla nostra percezione del problema. -00:00:20.836 --> 00:00:23.660 -Quando questo accade, -diciamo che i dati sono distorti. +9 +00:00:20.961 --> 00:00:23.561 +Quando succede, +si dice che i dati sono distorti. + +10 +00:00:23.586 --> 00:00:26.241 +Gli algoritmi d'IA +esistono da molto tempo, -00:00:23.917 --> 00:00:26.080 -Gli algoritmi di IA esistono da molto tempo +11 +00:00:26.266 --> 00:00:29.525 +ma non funzionavano così bene +perché non avevamo dati etichettati. -00:00:26.322 --> 00:00:29.267 -ma non hanno funzionato così bene -perché non abbiamo dati etichettati. +12 +00:00:29.550 --> 00:00:32.235 +Oggi, i dati sono disponibili +e in grande quantità. -00:00:29.739 --> 00:00:31.994 -Oggi sono disponibili molti dati. +13 +00:00:32.272 --> 00:00:34.727 +È per questo motivo +che l'IA è così diffusa. -00:00:32.429 --> 00:00:34.410 -Ed è per questo che l'IA è così diffusa. +14 +00:00:34.752 --> 00:00:37.919 +Ma bisogna fare attenzione, +perché i dati possono essere distorti. -00:00:34.750 --> 00:00:37.817 -Ma bisogna fare attenzione -perché i dati potrebbero essere distorti. \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid2-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid2-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..353d414943bccd9201544ec64c1bd7c623f9319a --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid2-sl.vtt @@ -0,0 +1,56 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.090 --> 00:00:01.131 +Seksistično? + +00:00:01.423 --> 00:00:02.673 +In če so takšni tudi naši podatki? + +00:00:03.298 --> 00:00:06.215 +Najbrž ste opazili, + +00:00:06.256 --> 00:00:08.465 +da je naš model vse osebe z dolgimi lasmi +označil kot ženske, + +00:00:08.506 --> 00:00:10.506 +tiste s kratkimi pa kot moške. + +00:00:10.881 --> 00:00:12.090 +Ne da bi se zavedali, + +00:00:12.465 --> 00:00:14.548 +smo modelu posredovali podatke, + +00:00:14.590 --> 00:00:16.673 +razvrščene na podlagi drugačnega +kriterija, kot smo ga izbrali. + +00:00:17.381 --> 00:00:20.340 +Na razvrščanje podatkov +je vplivalo naše dojemanje problema (okoliščin). + +00:00:20.798 --> 00:00:23.506 +Ko se zgodi kaj takega, +rečemo, da so podatki pristranski. + +00:00:23.923 --> 00:00:26.131 +Algoritmi UI obstajajo že dolgo, + +00:00:26.340 --> 00:00:29.340 +vendar včasih niso bili tako učinkoviti, +ker podatki niso bili označeni. + +00:00:29.798 --> 00:00:31.965 +Danes so nam na voljo +velike količine podatkov. + +00:00:32.423 --> 00:00:34.340 +Prav zato je UI tako razširjena. + +00:00:34.756 --> 00:00:37.923 +Vseeno moramo biti previdni, +saj lahko podatki vsebujejo predsodke (so pristranski). + diff --git a/data/tuto2/vtt/tuto2-activite1-vid3-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid3-en.vtt index 7b38c3d6967c734324d42f84bfbdb2f1cbb405ff..a6498a5ec37d05fb2f78e9b14f1d45df3c0ff9eb 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid3-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid3-en.vtt @@ -1,29 +1,43 @@ -WEBVTT +WEBVTT FILE -00:00:00.292 --> 00:00:02.386 +1 +00:00:00.423 --> 00:00:02.375 The art of data preparation. -00:00:02.789 --> 00:00:07.083 -Preparing the data for AI +2 +00:00:02.804 --> 00:00:06.937 +Preparing data to create AI is at least 70% of the work. -00:00:07.167 --> 00:00:09.958 +3 +00:00:07.242 --> 00:00:09.953 Data is very important -so a program can learn. +in machine learning. -00:00:10.392 --> 00:00:13.870 +4 +00:00:10.215 --> 00:00:11.490 As we saw earlier, -the machine only learns what we show it. -00:00:14.208 --> 00:00:18.470 -We therefore have to spend time selecting -the data and preparing it properly +5 +00:00:11.515 --> 00:00:13.983 +the machine only learns +from what we show it. -00:00:18.521 --> 00:00:19.875 +6 +00:00:14.008 --> 00:00:17.271 +So you have to take the time +to carefully select this data + +7 +00:00:17.296 --> 00:00:19.991 +and prepare it correctly to get good results. -00:00:20.321 --> 00:00:22.658 -But it is not always as easy as it looks! +8 +00:00:20.298 --> 00:00:22.840 +This is not always as easy as it sounds. + +9 +00:00:23.129 --> 00:00:25.587 +Let's take a closer look and experiment. -00:00:23.246 --> 00:00:25.796 -Let's take a closer look and experiment! \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid3-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid3-it.vtt old mode 100755 new mode 100644 index dec0a32bdc38265c832d9b5c76cbd9337139a9e3..31dc151ddf285dd1b56479829dd9dfb23e4a5eaf --- a/data/tuto2/vtt/tuto2-activite1-vid3-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid3-it.vtt @@ -1,29 +1,47 @@ -WEBVTT +WEBVTT FILE -00:00:00.292 --> 00:00:02.386 -L'arte della preparazione dei dati. +1 +00:00:00.340 --> 00:00:02.266 +L'ARTE DI PREPARARE I DATI -00:00:02.789 --> 00:00:07.083 -Preparare i dati per l'IA -è almeno il 70% del lavoro. +2 +00:00:02.606 --> 00:00:04.521 +Preparare i dati per creare un'IA -00:00:07.167 --> 00:00:09.958 +3 +00:00:04.546 --> 00:00:07.140 +corrisponde almeno al 70% del lavoro. + +4 +00:00:07.165 --> 00:00:10.188 I dati sono molto importanti -perché un programma possa imparare. +per l'apprendimento di un programma. + +5 +00:00:10.239 --> 00:00:11.970 +Come abbiamo visto precedentemente, -00:00:10.392 --> 00:00:13.870 -Come abbiamo visto prima, -la macchina impara solo ciò che le mostriamo. +6 +00:00:11.995 --> 00:00:14.363 +la macchina impara solo +da quello che le mostriamo. -00:00:14.208 --> 00:00:18.470 -Dobbiamo quindi dedicare del tempo a selezionare -i dati e prepararli adeguatamente +7 +00:00:14.388 --> 00:00:17.943 +Bisogna quindi prendersi il tempo +di selezionare bene questi dati -00:00:18.521 --> 00:00:19.875 +8 +00:00:17.968 --> 00:00:21.121 +e di prepararli correttamente per ottenere buoni risultati. -00:00:20.321 --> 00:00:22.658 -Ma non è sempre così facile come sembra! +9 +00:00:21.146 --> 00:00:23.254 +Ma non è sempre così facile come sembra. + +10 +00:00:23.279 --> 00:00:26.366 +Diamo uno sguardo più da vicino +e facciamo un esperimento. -00:00:23.246 --> 00:00:25.796 -Diamo un'occhiata più da vicino e sperimentiamo! \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid3-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid3-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..d28f676008cb8cf495149ccd1db796ebb84412dd --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid3-sl.vtt @@ -0,0 +1,36 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.423 --> 00:00:02.090 +Umetnost priprave podatkov. + +00:00:02.548 --> 00:00:07.131 +Pri ustvarjanju UI +70% dela predstavlja priprava podatkov. + +00:00:07.173 --> 00:00:10.173 +Podatki +so pri strojnem učenju zelo pomembni. + +00:00:10.215 --> 00:00:11.756 +Kot smo videli prej, + +00:00:11.798 --> 00:00:13.798 +se stroj uči samo na podlagi tega, +kar mu pokažemo, + +00:00:14.215 --> 00:00:16.965 +zato si je treba vzeti čas +in skrbno izbrati podatke + +00:00:17.006 --> 00:00:19.798 +ter jih ustrezno pripraviti, +saj bomo le tako dobili dobre rezultate. + +00:00:20.298 --> 00:00:22.840 +To pa ni vedno tako preprosto, kot se sliši. + +00:00:23.215 --> 00:00:25.673 +Poglejmo podrobno in preizkusimo. + diff --git a/data/tuto2/vtt/tuto2-activite1-vid4-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid4-en.vtt index 6826e9d35652612aa3e4f9ea47ec99704f2a4131..2b6ca5e43378b40ef569f30db494d14d99beec76 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid4-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid4-en.vtt @@ -1,42 +1,65 @@ -WEBVTT +WEBVTT FILE -00:00:00.542 --> 00:00:02.023 -Biases in data. +1 +00:00:00.465 --> 00:00:02.164 +Data bias. -00:00:02.574 --> 00:00:04.533 -The program doesn't see things how we do. +2 +00:00:02.492 --> 00:00:04.606 +The program doesn't see like we do. -00:00:04.617 --> 00:00:07.080 -It doesn't know -the concept of man and woman. +3 +00:00:04.631 --> 00:00:07.092 +It does not know what a man or a woman is. -00:00:07.164 --> 00:00:10.250 +4 +00:00:07.117 --> 00:00:10.640 It makes what are called statistical approximations. -00:00:10.984 --> 00:00:15.124 -Is this image closer -to images labelled "women" +5 +00:00:10.879 --> 00:00:12.933 +Is this image statistically closer -00:00:15.208 --> 00:00:16.833 -or images labelled "men"? +6 +00:00:12.958 --> 00:00:14.754 +to images labelled "female" -00:00:16.917 --> 00:00:18.204 -What does it see? +7 +00:00:14.868 --> 00:00:16.590 +or to those labelled "male"? -00:00:18.458 --> 00:00:20.852 -The blue background, skin colour? +8 +00:00:16.798 --> 00:00:17.840 +What did it see? -00:00:21.208 --> 00:00:22.542 +9 +00:00:18.081 --> 00:00:19.238 +The blue background? + +10 +00:00:19.673 --> 00:00:20.923 +The skin colour? + +11 +00:00:21.173 --> 00:00:22.659 A pair of glasses? -00:00:22.836 --> 00:00:26.305 -The way we choose our input data is key. +12 +00:00:23.073 --> 00:00:26.057 +How we choose our input data +is fundamental. + +13 +00:00:26.368 --> 00:00:29.368 +Choosing your data +is a big responsibility. + +14 +00:00:30.423 --> 00:00:32.976 +Let's now try to correct our data set -00:00:27.042 --> 00:00:29.917 -Choosing the data is known -to be a big responsibility. +15 +00:00:33.001 --> 00:00:34.668 +to eliminate any bias. -00:00:30.495 --> 00:00:34.871 -Now, let's try to correct -our data set to eliminate the biases. \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid4-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid4-it.vtt old mode 100755 new mode 100644 index 15183557b12988ec95cf547f4cbf35d7b17034b8..7ede53d14f60a3d39c5b1207cddbcbc04fa8c472 --- a/data/tuto2/vtt/tuto2-activite1-vid4-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid4-it.vtt @@ -1,42 +1,62 @@ -WEBVTT - -00:00:00.542 --> 00:00:02.023 -Bias nei dati. - -00:00:02.574 --> 00:00:04.533 -Il programma non vede le cose come le vediamo noi. - -00:00:04.617 --> 00:00:07.080 -Non conosce -il concetto di uomo e donna. - -00:00:07.164 --> 00:00:10.250 -Fa quelle che sono chiamate -approssimazioni statistiche. - -00:00:10.984 --> 00:00:15.124 -Questa immagine è più vicina -alle immagini etichettate come "donne" - -00:00:15.208 --> 00:00:16.833 -o alle immagini etichettate "uomini"? - -00:00:16.917 --> 00:00:18.204 -Cosa vede? +WEBVTT FILE + +1 +00:00:00.646 --> 00:00:02.293 +PREGIUDIZI NEI DATI + +2 +00:00:02.514 --> 00:00:04.360 +Il programma non vede come noi. + +3 +00:00:04.385 --> 00:00:06.986 +Non conosce il concetto +di "uomo" o di "donna". + +4 +00:00:07.131 --> 00:00:10.351 +Fa quelle che chiamiamo +"approssimazioni statistiche". + +5 +00:00:10.838 --> 00:00:13.832 +Questa immagine si avvicina +statisticamente di più + +6 +00:00:13.857 --> 00:00:18.088 +alle immagini etichettate come "donna" +o alle immagini etichettate come "uomo"? + +7 +00:00:18.113 --> 00:00:19.240 +Che cosa ha visto? + +8 +00:00:19.265 --> 00:00:21.434 +Lo sfondo blu? +Il colore della pelle? + +9 +00:00:21.459 --> 00:00:22.667 +Un paio di occhiali? -00:00:18.458 --> 00:00:20.852 -Lo sfondo blu, il colore della pelle? +10 +00:00:22.780 --> 00:00:26.420 +Il modo in cui scegliamo +i nostri dati di input è fondamentale. -00:00:21.208 --> 00:00:22.542 -Un paio di occhiali? +11 +00:00:26.718 --> 00:00:30.013 +Scegliere i dati si sta rivelando +una grande responsabilità. -00:00:22.836 --> 00:00:26.305 -Il modo in cui scegliamo i nostri dati di input è fondamentale. +12 +00:00:30.423 --> 00:00:32.999 +Proviamo ora a correggere +il nostro set di dati -00:00:27.042 --> 00:00:29.917 -La scelta dei dati è nota -essere una grande responsabilità. +13 +00:00:33.024 --> 00:00:34.774 +per eliminare tutti i pregiudizi. -00:00:30.495 --> 00:00:34.871 -Ora, proviamo a correggere -il nostro set di dati per eliminare le distorsioni. diff --git a/data/tuto2/vtt/tuto2-activite1-vid4-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid4-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..863c007669ecbe9d378756c936f6090f763562df --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid4-sl.vtt @@ -0,0 +1,53 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.465 --> 00:00:02.173 +Pristranski podatki. + +00:00:02.215 --> 00:00:04.215 +Program ne "vidi" na enak način kot ljudje. + +00:00:04.631 --> 00:00:06.673 +Ne ve, kaj je to 'moški' ali 'ženska'. + +00:00:07.048 --> 00:00:10.090 +Namesto tega uporablja +tako imenovane statistične približke. + +00:00:11.090 --> 00:00:13.506 +Je ta podoba +statistično bolj podobna tistim, + +00:00:13.548 --> 00:00:15.256 +ki so označene z opisom "ženska", + +00:00:15.298 --> 00:00:16.756 +ali tistim, ki so označene z opisom "moški"? + +00:00:16.798 --> 00:00:17.840 +Kaj je videl oz. zaznal program? + +00:00:18.340 --> 00:00:19.340 +Modro ozadje? + +00:00:19.673 --> 00:00:20.923 +Barvo kože? + +00:00:21.173 --> 00:00:22.506 +Očala? + +00:00:22.548 --> 00:00:26.173 +Način, kako izberemo vhodne podatke, +je bistvenega pomena. + +00:00:26.923 --> 00:00:29.923 +Ko izbiramo podatke, +je na nas velika in pomembna odgovornost. + +00:00:30.423 --> 00:00:33.131 +Poskušajmo sedaj popraviti naš nabor podatkov tako, + +00:00:33.173 --> 00:00:34.840 +da ne bo več pristranski. + diff --git a/data/tuto2/vtt/tuto2-activite1-vid5-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid5-en.vtt index cdd16c659cecfd758555efb4d89234f4b3286dfb..654b6731552acf1383761064fa3633b6c4fd7700 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid5-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid5-en.vtt @@ -1,38 +1,60 @@ -WEBVTT +WEBVTT FILE -00:00:00.125 --> 00:00:02.500 +1 +00:00:00.090 --> 00:00:02.215 Mastering data sets. -00:00:02.738 --> 00:00:06.062 +2 +00:00:02.404 --> 00:00:05.984 Artificial intelligence can only recognise -what we've taught it. +what it has been taught. -00:00:06.375 --> 00:00:10.375 -The data used to train the program has -a strong influence on the results. +3 +00:00:06.118 --> 00:00:07.968 +The data you train the programme with -00:00:10.458 --> 00:00:14.328 +4 +00:00:07.993 --> 00:00:10.553 +therefore has a strong influence +on the results. + +5 +00:00:10.578 --> 00:00:14.357 Mastering the data is a key element -to master this technology +in mastering this technology -00:00:14.412 --> 00:00:16.104 +6 +00:00:14.382 --> 00:00:15.965 and the results you get from it. -00:00:16.150 --> 00:00:19.851 -You should always be vigilant when looking -at the results from an AI program +7 +00:00:16.105 --> 00:00:17.590 +We must always be careful + +8 +00:00:17.615 --> 00:00:19.965 +when looking at an AI program's results + +9 +00:00:20.082 --> 00:00:23.832 +and ask ourselves +what data was used to train it. + +10 +00:00:24.006 --> 00:00:25.148 +Deliberately or not, -00:00:20.250 --> 00:00:23.916 -and always ask -where the data used to train it is from. +11 +00:00:25.173 --> 00:00:28.131 +it may contain +mechanically reproduced biases -00:00:24.000 --> 00:00:28.521 -Deliberately or not, it can contain biases -that are mechanically reproduced +12 +00:00:28.204 --> 00:00:30.231 +that have significant consequences, -00:00:28.574 --> 00:00:30.291 -and which have big consequences. +13 +00:00:30.256 --> 00:00:33.465 +for recruitment, for example, +or access to credit. -00:00:30.375 --> 00:00:33.542 -For job recruitment for example, -or even access to a loan. \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid5-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid5-it.vtt old mode 100755 new mode 100644 index cf27bb8cccf5e2aafb500755df6128b4d622fcbd..bd5b9fa285eaaa0ce3d60cf9ee93c15fe23c9de8 --- a/data/tuto2/vtt/tuto2-activite1-vid5-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid5-it.vtt @@ -1,38 +1,58 @@ -WEBVTT +WEBVTT FILE -00:00:00.125 --> 00:00:02.500 -Padroneggiare le serie di dati. +1 +00:00:00.090 --> 00:00:02.465 +PADRONEGGIARE I SET DI DATI -00:00:02.738 --> 00:00:06.062 -L'intelligenza artificiale può riconoscere solo -ciò che le abbiamo insegnato. +2 +00:00:02.506 --> 00:00:06.153 +L'intelligenza artificiale riconosce +solo ciò che le viene insegnato. -00:00:06.375 --> 00:00:10.375 -I dati usati per addestrare il programma hanno -una forte influenza sui risultati. +3 +00:00:06.178 --> 00:00:08.642 +I dati con i quali +viene addestrato un programma -00:00:10.458 --> 00:00:14.328 -Padroneggiare i dati è un elemento chiave +4 +00:00:08.667 --> 00:00:10.928 +influiscono fortemente sui risultati. + +5 +00:00:10.953 --> 00:00:15.178 +Padroneggiare i dati è un fattore chiave per padroneggiare questa tecnologia -00:00:14.412 --> 00:00:16.104 -e i risultati che si ottengono da essa. +6 +00:00:15.203 --> 00:00:16.725 +e i risultati che se ne ricavano. + +7 +00:00:16.750 --> 00:00:18.193 +Bisogna sempre fare attenzione + +8 +00:00:18.218 --> 00:00:20.933 +quando si osservano i risultati +di un programma d'IA -00:00:16.150 --> 00:00:19.851 -Si dovrebbe sempre essere vigili quando si guarda -i risultati di un programma AI +9 +00:00:20.958 --> 00:00:24.436 +e chiedersi sempre a partire +da quali dati è stato addestrato. -00:00:20.250 --> 00:00:23.916 -e chiedere sempre -da dove provengono i dati usati per addestrarlo. +10 +00:00:24.461 --> 00:00:27.066 +Volontariamente o no, +può contenere dei pregiudizi -00:00:24.000 --> 00:00:28.521 -Deliberatamente o no, può contenere distorsioni -che sono riprodotti meccanicamente +11 +00:00:27.091 --> 00:00:30.764 +che vengono riprodotti meccanicamente +e che hanno conseguenze importanti, -00:00:28.574 --> 00:00:30.291 -e che hanno grandi conseguenze. +12 +00:00:30.789 --> 00:00:33.593 +per un'assunzione, ad esempio, +o per l'accesso al credito. -00:00:30.375 --> 00:00:33.542 -Per il reclutamento del lavoro, per esempio, -o anche per l'accesso a un prestito. diff --git a/data/tuto2/vtt/tuto2-activite1-vid5-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid5-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..d9c187fa156dc28429871794c397ac10a48c0f80 --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid5-sl.vtt @@ -0,0 +1,48 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.090 --> 00:00:02.215 +Obvladovanje zbirk podatkov. + +00:00:02.506 --> 00:00:06.256 +Umetna inteligenca prepozna samo tisto, +kar jo naučimo prepoznati. + +00:00:06.298 --> 00:00:08.423 +Podatki, ki jih uporabljamo za učenje programa, + +00:00:08.465 --> 00:00:10.340 +bistveno vplivajo na rezultate. + +00:00:10.381 --> 00:00:14.423 +Nujno je, da dobro poznamo delo s podatki, +saj lahko le tako obvladamo te tehnologije + +00:00:14.465 --> 00:00:16.048 +in žanjemo rezultate njihovega delovanja. + +00:00:16.090 --> 00:00:17.506 +Pri interpretaciji rezultatov, +nastalih s pomočjo programov UI + +00:00:17.548 --> 00:00:19.965 +moramo biti vedno previdni. + +00:00:20.215 --> 00:00:23.965 +Vprašati se moramo, kateri podatki +so bili uporabljeni v fazi učenja programa. + +00:00:24.006 --> 00:00:25.256 +Načrtno ali ne, program lahko vsebuje + +00:00:25.298 --> 00:00:28.256 +mehansko reproducirane pristranske podatke, + +00:00:28.298 --> 00:00:30.215 +ki pomembno vplivajo na rezultate, +na primer, v postopkih iskanja novih kadrov + +00:00:30.256 --> 00:00:33.465 +ali pri obravnavanju kreditnih vlog. + diff --git a/data/tuto2/vtt/tuto2-activite1-vid6-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid6-en.vtt index 7b6546ef1e239c6b004d545e15ef1c00f4b7b41d..b9aeae12f4511ddd3023c4265e6d98e2ff84b381 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid6-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid6-en.vtt @@ -1,64 +1,101 @@ -WEBVTT +WEBVTT FILE -00:00:00.458 --> 00:00:03.659 -What if we played with the data +1 +00:00:00.718 --> 00:00:03.673 +What if we play with the data to trick the machine? -00:00:04.296 --> 00:00:08.405 +2 +00:00:04.232 --> 00:00:07.023 The program will make predictions -in the categories that we defined - -00:00:08.437 --> 00:00:10.160 -and the examples we showed it. - -00:00:10.458 --> 00:00:12.750 -Once it is trained, we can trick it. - -00:00:12.821 --> 00:00:17.578 -For example, certain jewellery -can deceive facial recognition - -00:00:18.160 --> 00:00:20.406 -or even some signs with patterns - -00:00:21.105 --> 00:00:24.398 -can get around -automatic video surveillance. - -00:00:24.750 --> 00:00:27.916 -But as we know, we can also -trick the machine with our data. - -00:00:28.000 --> 00:00:32.406 +based on the categories + +3 +00:00:07.048 --> 00:00:09.953 +we have defined and the examples +we have shown to it. + +4 +00:00:10.406 --> 00:00:13.169 +Once trained, it is possible to trick it. + +5 +00:00:13.380 --> 00:00:14.333 +For example, + +6 +00:00:14.358 --> 00:00:17.566 +there are jewellery items +that can deceive facial recognition, + +7 +00:00:17.965 --> 00:00:19.810 +and signs with patterns + +8 +00:00:19.835 --> 00:00:22.803 +that can bypass +automatic surveillance videos. + +9 +00:00:23.130 --> 00:00:24.920 +However, as we have learned, + +10 +00:00:24.945 --> 00:00:27.428 +we can also trick the machine +with our data. + +11 +00:00:27.720 --> 00:00:32.268 For example, we can train a program -to recognise "beautiful" or "ugly" people - -00:00:32.833 --> 00:00:35.236 -by only showing it -what we think are beautiful people. - -00:00:35.832 --> 00:00:42.500 -Generally speaking, subjective categories, -cute, not cute, stupid, intelligent etc. - -00:00:42.520 --> 00:00:44.875 -depend on the person preparing the data. - -00:00:45.247 --> 00:00:49.830 -We can also train a program to recognise -whether there are people in an image - -00:00:50.379 --> 00:00:53.886 -by putting all our examples -in the "no people" category. - -00:00:54.167 --> 00:00:55.818 -This way you can go incognito! - -00:00:55.902 --> 00:00:59.492 -You now need to hijack the data +to recognise beautiful and ugly people, + +12 +00:00:32.293 --> 00:00:35.773 +by showing only our face +as an example of beautiful people. + +13 +00:00:36.151 --> 00:00:38.970 +Generally speaking, +all the subjective categories, + +14 +00:00:38.995 --> 00:00:41.966 +such as cute, not cute, +stupid, intelligent, + +15 +00:00:41.991 --> 00:00:44.532 +depend on the person +who prepares the data. + +16 +00:00:45.056 --> 00:00:46.700 +We can also train a program + +17 +00:00:46.733 --> 00:00:49.450 +to recognise whether there are people +or not in the picture + +18 +00:00:49.475 --> 00:00:53.359 +by putting all our examples of faces +in the no people category. + +19 +00:00:53.384 --> 00:00:55.921 +This enables us to go incognito. + +20 +00:00:55.992 --> 00:00:59.406 +We will now hijack the data to create a biased program. -00:01:00.042 --> 00:01:02.250 -How can we trick -the program with our data? \ No newline at end of file +21 +00:01:00.000 --> 00:01:02.320 +How can we trick the machine +with our data? + diff --git a/data/tuto2/vtt/tuto2-activite1-vid6-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid6-it.vtt old mode 100755 new mode 100644 index b1317fcbbeca238e4850b6672b62e5fd0c17fd7f..4e54745e56f6d228b365a9a471eb365e48e33c2b --- a/data/tuto2/vtt/tuto2-activite1-vid6-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid6-it.vtt @@ -1,64 +1,110 @@ -WEBVTT - -00:00:00.458 --> 00:00:03.659 -E se giocassimo con i dati -per ingannare la macchina? - -00:00:04.296 --> 00:00:08.405 -Il programma farà delle previsioni -nelle categorie che abbiamo definito - -00:00:08.437 --> 00:00:10.160 -e gli esempi che gli abbiamo mostrato. - -00:00:10.458 --> 00:00:12.750 -Una volta addestrato, possiamo ingannarlo. - -00:00:12.821 --> 00:00:17.578 -Per esempio, alcuni gioielli -possono ingannare il riconoscimento facciale - -00:00:18.160 --> 00:00:20.406 -o anche alcuni segni con modelli - -00:00:21.105 --> 00:00:24.398 -possono aggirare -la videosorveglianza automatica. - -00:00:24.750 --> 00:00:27.916 -Ma come sappiamo, possiamo anche -ingannare la macchina con i nostri dati. - -00:00:28.000 --> 00:00:32.406 -Per esempio, possiamo addestrare un programma -a riconoscere le persone "belle" o "brutte" - -00:00:32.833 --> 00:00:35.236 -mostrandogli solo -solo quelle che noi pensiamo siano persone belle. - -00:00:35.832 --> 00:00:42.500 -In generale, categorie soggettive, -carino, non carino, stupido, intelligente ecc. - -00:00:42.520 --> 00:00:44.875 -dipendono dalla persona che prepara i dati. - -00:00:45.247 --> 00:00:49.830 -Possiamo anche addestrare un programma a riconoscere -se ci sono persone in un'immagine - -00:00:50.379 --> 00:00:53.886 -mettendo tutti i nostri esempi +WEBVTT FILE + +1 +00:00:00.298 --> 00:00:04.173 +E SE GIOCASSIMO CON I DATI +PER INGANNARE LA MACCHINA? + +2 +00:00:04.215 --> 00:00:06.013 +Il programma fa delle previsioni + +3 +00:00:06.038 --> 00:00:08.695 +sulla base dalle categorie +che sono state definite + +4 +00:00:08.720 --> 00:00:11.010 +e degli esempi +che gli sono stati mostrati. + +5 +00:00:11.035 --> 00:00:13.777 +Una volta addestrato, +è possibile ingannarlo. + +6 +00:00:13.802 --> 00:00:15.183 +Esistono, ad esempio, + +7 +00:00:15.208 --> 00:00:18.406 +gioielli in grado di confondere +il riconoscimento facciale, + +8 +00:00:18.431 --> 00:00:20.439 +così come cartelli con dei disegni + +9 +00:00:20.464 --> 00:00:23.912 +in grado di eludere la sorveglianza +con rilevamento automatico. + +10 +00:00:23.937 --> 00:00:25.265 +Ma come abbiamo capito, + +11 +00:00:25.290 --> 00:00:28.103 +possiamo ingannare la macchina +anche con i nostri dati. + +12 +00:00:28.128 --> 00:00:30.523 +Ad esempio, +possiamo addestrare un programma + +13 +00:00:30.548 --> 00:00:33.232 +a riconoscere le persone belle +e le persone brutte, + +14 +00:00:33.257 --> 00:00:36.446 +mostrando la nostra faccia +come esempio di persona bella. + +15 +00:00:36.471 --> 00:00:39.413 +In linea generale, +tutte le categorie soggettive, + +16 +00:00:39.438 --> 00:00:41.951 +piccolo, grande, stupido, intelligente... + +17 +00:00:41.976 --> 00:00:44.570 +dipendono dalla persona +che preparerà i dati. + +18 +00:00:44.595 --> 00:00:46.364 +Si può anche addestrare un programma + +19 +00:00:46.389 --> 00:00:50.109 +a riconoscere se ci sono persone +oppure no su un'immagine + +20 +00:00:50.134 --> 00:00:54.283 +mettendo gli esempi della nostra faccia nella categoria "nessuna persona". -00:00:54.167 --> 00:00:55.818 -In questo modo puoi andare in incognito! +21 +00:00:54.308 --> 00:00:56.065 +Così si può passare inosservati. + +22 +00:00:56.090 --> 00:00:59.545 +Ora andremo a modificare i dati +per creare un programma distorto. -00:00:55.902 --> 00:00:59.492 -Ora avete bisogno di dirottare i dati -per creare un programma di parte. +23 +00:00:59.589 --> 00:01:02.300 +Come si può ingannare +la macchina attraverso i dati? -00:01:00.042 --> 00:01:02.250 -Come possiamo ingannare -il programma con i nostri dati? \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid6-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid6-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..36acdf8107e14cfbc1496d3437ab2356a5b663b0 --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid6-sl.vtt @@ -0,0 +1,81 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.090 --> 00:00:03.673 +Se lahko poigramo s podatki +in tako pretentamo stroj? + +00:00:04.215 --> 00:00:07.548 +Program bo predvideval +na podlagi kategorij, + +00:00:07.590 --> 00:00:10.173 +ki smo jih določili, +in primerov, ki smo mu jih pokazali v faza učenja. + +00:00:10.215 --> 00:00:12.631 +Ko se enkrat nauči, +pa ga lahko tudi pretentamo. + +00:00:12.673 --> 00:00:14.090 +Na primer... + +00:00:14.548 --> 00:00:17.756 +Določen nakit lahko zavede +program za prepoznavanje obraza. + +00:00:17.965 --> 00:00:20.506 +Obstajajo tudi določenimi grafični vzorci, + +00:00:20.923 --> 00:00:24.465 +ki se izmuznejo očem +avtomatskih nadzornih kamer. + +00:00:24.506 --> 00:00:25.923 +Toda kot smo se že naučili, + +00:00:25.965 --> 00:00:27.881 +lahko stroj pretentamo tudi v primeru našega nabora podatkov. + +00:00:27.923 --> 00:00:32.423 +Lahko ga, denimo, naučimo razlikovati +med lepimi in grdimi ljudi tako, + +00:00:32.840 --> 00:00:35.215 +da mu kot primer lepega človeka +pokažemo samo podobo svojega obraza. + +00:00:35.798 --> 00:00:38.673 +Vse subjektivne kategorije, + +00:00:38.715 --> 00:00:42.423 +npr. prikupen, neprikupen, +neumen, pameten, + +00:00:42.465 --> 00:00:45.006 +so odvisne od osebe, +ki pripravlja podatke. + +00:00:45.048 --> 00:00:47.340 +Program lahko naučimo tudi, + +00:00:47.381 --> 00:00:50.006 +da prepozna, +ali je na fotografiji človek ali ne. + +00:00:50.381 --> 00:00:53.965 +To naredimo tako da vse svoje fotografije, +na katerih so obrazi +uvrstimo v kategorijo "ni človek". + +00:00:54.006 --> 00:00:55.756 +Na tak način lahko ostanemo anonimni. + +00:00:55.798 --> 00:00:59.506 +Sedaj bomo prevzeli nadzor nad podatki +in ustvarili pristranski program. + +00:01:00.048 --> 00:01:02.173 +Kako lahko stroj pretentamo s pomočjo podatkov? + diff --git a/data/tuto2/vtt/tuto2-activite1-vid7-en.vtt b/data/tuto2/vtt/tuto2-activite1-vid7-en.vtt index 9f8d6f87c391f4b6e27d087aa52c9b8b6e94aea2..e7018b0ff84c6aa58bc0cec0a3a073ddaedbd73a 100644 --- a/data/tuto2/vtt/tuto2-activite1-vid7-en.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid7-en.vtt @@ -1,58 +1,100 @@ -WEBVTT +WEBVTT FILE -00:00:00.167 --> 00:00:01.417 -Trick the machine! +1 +00:00:00.090 --> 00:00:01.381 +Tricking the machine. -00:00:01.500 --> 00:00:05.667 -As you saw, data plays -an essential role in AI learning. +2 +00:00:01.423 --> 00:00:02.664 +As you have seen, -00:00:05.750 --> 00:00:07.791 -We can easily trick the machine. +3 +00:00:02.689 --> 00:00:05.109 +data plays a key role in AI learning. -00:00:07.875 --> 00:00:13.330 -To train AI, we need thousands -of examples and to know what they are. +4 +00:00:05.134 --> 00:00:06.960 +We can easily mislead the machine. -00:00:13.796 --> 00:00:19.080 -Today, we can easily find -examples with labels +5 +00:00:06.985 --> 00:00:08.546 +If you want to train AI, -00:00:19.365 --> 00:00:20.958 -to solve our AI problems. +6 +00:00:08.571 --> 00:00:10.273 +you need thousands of examples -00:00:21.042 --> 00:00:25.333 -You can create your own data set -or use ready-to-use ones. +7 +00:00:10.298 --> 00:00:11.930 +and you need to know what they are. -00:00:25.417 --> 00:00:28.167 -But, as you now know, -you need to be careful with your data. +8 +00:00:11.955 --> 00:00:14.321 +Nowadays, we can easily find examples -00:00:28.251 --> 00:00:30.578 -Because you can easily get biased data +9 +00:00:14.346 --> 00:00:16.969 +with labels to answer our AI problems. -00:00:30.917 --> 00:00:33.958 +10 +00:00:17.019 --> 00:00:18.947 +You can create your own dataset + +11 +00:00:18.972 --> 00:00:20.541 +or use ready-made ones, + +12 +00:00:20.566 --> 00:00:22.024 +but as you know by now, + +13 +00:00:22.049 --> 00:00:24.214 +you have to be careful with such datasets + +14 +00:00:24.239 --> 00:00:26.487 +because you can easily get biased data + +15 +00:00:26.512 --> 00:00:28.606 if you don't ask the right questions + +16 +00:00:28.631 --> 00:00:30.707 or if you don't sort them properly. -00:00:34.042 --> 00:00:35.583 +17 +00:00:30.732 --> 00:00:32.440 There are two types of bias, -00:00:35.667 --> 00:00:40.083 +18 +00:00:32.527 --> 00:00:34.880 processing or statistical bias, -from badly prepared data -00:00:40.167 --> 00:00:43.458 -and social or cognitive bias, -which is human bias, +19 +00:00:34.905 --> 00:00:37.286 +those that have to do +with poor data preparation, + +20 +00:00:37.311 --> 00:00:39.662 +and societal or cognitive bias, + +21 +00:00:39.753 --> 00:00:41.795 +those that have to do with human bias, + +22 +00:00:41.820 --> 00:00:43.403 +gender issues for example. -00:00:43.554 --> 00:00:44.999 -for example, the gender issue. +23 +00:00:43.574 --> 00:00:47.603 +At the end of the day, +AI is human and what we put into it, -00:00:45.083 --> 00:00:48.296 -In the end, AI is a human creation -and is what we put into it: +24 +00:00:47.691 --> 00:00:50.429 +with both good intentions and biases. -00:00:48.542 --> 00:00:50.140 -good intentions and bias. \ No newline at end of file diff --git a/data/tuto2/vtt/tuto2-activite1-vid7-it.vtt b/data/tuto2/vtt/tuto2-activite1-vid7-it.vtt old mode 100755 new mode 100644 index e5cea4a84ee1f32437a8ef1c3ed1b621abfc9717..29dfe625a0706689ed8a3020a37d3f1f84aaf3ad --- a/data/tuto2/vtt/tuto2-activite1-vid7-it.vtt +++ b/data/tuto2/vtt/tuto2-activite1-vid7-it.vtt @@ -1,58 +1,102 @@ -WEBVTT - -00:00:00.167 --> 00:00:01.417 -Ingannare la macchina! - -00:00:01.500 --> 00:00:05.667 -Come avete visto, i dati giocano -un ruolo essenziale nell'apprendimento AI. - -00:00:05.750 --> 00:00:07.791 -Possiamo facilmente ingannare la macchina. - -00:00:07.875 --> 00:00:13.330 -Per addestrare l'IA, abbiamo bisogno di migliaia -di esempi e di sapere quali sono. - -00:00:13.796 --> 00:00:19.080 -Oggi, possiamo facilmente trovare -esempi con etichette - -00:00:19.365 --> 00:00:20.958 -per risolvere i nostri problemi di IA. - -00:00:21.042 --> 00:00:25.333 -Puoi creare il tuo set di dati -o usare quelli pronti all'uso. +WEBVTT FILE + +1 +00:00:00.090 --> 00:00:01.381 +INGANNARE LA MACCHINA! + +2 +00:00:01.423 --> 00:00:02.526 +Come hai potuto vedere, + +3 +00:00:02.551 --> 00:00:05.821 +i dati giocano un ruolo fondamentale +nell'apprendimento di un'IA. + +4 +00:00:05.846 --> 00:00:07.749 +Si può facilmente ingannare la macchina. + +5 +00:00:07.774 --> 00:00:09.376 +Per poter addestrare un'IA, + +6 +00:00:09.401 --> 00:00:13.236 +sono necessari migliaia e migliaia +di esempi e di sapere di cosa si tratta. + +7 +00:00:13.355 --> 00:00:15.528 +Al giorno d'oggi, è facile trovare esempi + +8 +00:00:15.553 --> 00:00:17.848 +con delle etichette, +o "<i>labels</i>" in inglese, + +9 +00:00:17.873 --> 00:00:19.933 +per risolvere questi problemi con l'IA. + +10 +00:00:19.958 --> 00:00:21.547 +Puoi creare il tuo set di dati, + +11 +00:00:21.572 --> 00:00:23.734 +o utilizzarne uno +tra quelli già esistenti. + +12 +00:00:23.759 --> 00:00:26.755 +Come ormai saprai, +bisogna essere prudenti con questi dati, + +13 +00:00:26.780 --> 00:00:29.363 +poiché si possono ottenere +facilmente dati distorti, + +14 +00:00:29.388 --> 00:00:31.069 +se non ci si pone le domande giuste + +15 +00:00:31.094 --> 00:00:32.957 +o se non li si ordina correttamente. -00:00:25.417 --> 00:00:28.167 -Ma, come ora sapete, -devi stare attento ai tuoi dati. +16 +00:00:32.982 --> 00:00:34.697 +Esistono due tipi di "<i>bias</i>": -00:00:28.251 --> 00:00:30.578 -Perché puoi facilmente ottenere dati distorti +17 +00:00:34.722 --> 00:00:37.098 +la "distorsione" o <i>bias </i>statistico, -00:00:30.917 --> 00:00:33.958 -se non fai le domande giuste -o se non li si ordina correttamente. +18 +00:00:37.123 --> 00:00:39.851 +ovvero quello che riguarda +un'errata preparazione dei dati, -00:00:34.042 --> 00:00:35.583 -Ci sono due tipi di bias, +19 +00:00:39.876 --> 00:00:41.906 +e il <i>bias </i>sociale o cognitivo, -00:00:35.667 --> 00:00:40.083 -bias di elaborazione o bias statistici, -da dati mal preparati +20 +00:00:41.931 --> 00:00:43.485 +che riguarda i pregiudizi umani, -00:00:40.167 --> 00:00:43.458 -e la distorsione sociale o cognitiva, -che è un pregiudizio umano, +21 +00:00:43.510 --> 00:00:45.261 +le questioni di genere, ad esempio. -00:00:43.554 --> 00:00:44.999 -per esempio, la questione del genere. +22 +00:00:45.286 --> 00:00:48.488 +In fin dei conti, +l'IA resta una creazione degli umani, -00:00:45.083 --> 00:00:48.296 -Alla fine, l'IA è una creazione umana -ed è ciò che ci mettiamo dentro: +23 +00:00:48.513 --> 00:00:50.360 +tra buone intenzioni e pregiudizi. -00:00:48.542 --> 00:00:50.140 -buone intenzioni e pregiudizi. diff --git a/data/tuto2/vtt/tuto2-activite1-vid7-sl.vtt b/data/tuto2/vtt/tuto2-activite1-vid7-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..57b296fb9b33a98d70e62577af89f522e277b163 --- /dev/null +++ b/data/tuto2/vtt/tuto2-activite1-vid7-sl.vtt @@ -0,0 +1,83 @@ +WEBVTT FILE + +WEBVTT + +00:00:00.090 --> 00:00:01.381 +Kako pretentati stroj? + +00:00:01.423 --> 00:00:02.756 +Kot ste lahko videli, + +00:00:02.798 --> 00:00:05.715 +imajo podatki ključno vlogo +pri učenju umetne inteligence. + +00:00:05.756 --> 00:00:07.756 +Stroj lahko zlahka zavedemo. + +00:00:07.798 --> 00:00:09.631 +Če želite učiti umetno inteligenco, + +00:00:09.673 --> 00:00:12.048 +potrebujete na tisoče primerov, + +00:00:12.090 --> 00:00:13.173 +in dobro morate vedeti, kakšni so. + +00:00:13.673 --> 00:00:16.423 +Danes brez težav najdemo +veliko število primerov, ki vsebujejo oznake, + +00:00:16.465 --> 00:00:20.923 +s pomočjo katerih +lahko rešimo težave z UI. + +00:00:20.965 --> 00:00:23.173 +Ustvarite lahko +svojo lastno zbirko podatkov + +00:00:23.215 --> 00:00:25.381 +ali uporabite že obstoječo, + +00:00:25.423 --> 00:00:26.881 +a kot sedaj že veste, + +00:00:26.923 --> 00:00:28.131 +morate biti pri tem previdni, + +00:00:28.173 --> 00:00:31.256 +saj prav lahko naletite +na pristranske podatke, + +00:00:31.298 --> 00:00:32.506 +če ne zastavite pravih vprašanj + +00:00:32.548 --> 00:00:34.006 +ali če podatke neustrezno razvrstite. + +00:00:34.048 --> 00:00:35.756 +Poznamo dve vrsti pristranskosti. + +00:00:35.798 --> 00:00:37.673 +Pristranskost statističnih ocen, + +00:00:37.715 --> 00:00:40.131 +kar je povezano +z neustrezno pripravo podatkov, + +00:00:40.173 --> 00:00:41.923 +in družbeno ali kognitivno pristranskost. + +00:00:41.965 --> 00:00:43.423 +To so človeški predsodki, + +00:00:43.465 --> 00:00:45.048 +npr. neenaka obravnava spolov. + +00:00:45.090 --> 00:00:48.298 +Nenazadnje je UI sad človeškega dela +in vsebuje tisto, kar je človek vnesel vanjo, + +00:00:48.340 --> 00:00:50.131 +skupaj z dobrimi nameni, pa tudi s predsodki. + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid1-en.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid1-en.vtt index 6306ff6081aa9dd2574e6659668194e65d1147f4..1ebcf0c189dd3934cddc3e298bc7b5ea165476bc 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid1-en.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid1-en.vtt @@ -1,4 +1,4 @@ -WEBVTT +WEBVTT FILE 1 00:00:04.528 --> 00:00:07.349 @@ -30,7 +30,7 @@ GAN consists of two neural networks 8 00:00:20.729 --> 00:00:22.135 -competing against each other +competing against each other: 9 00:00:22.135 --> 00:00:24.621 diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid1-fr.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid1-fr.vtt old mode 100644 new mode 100755 index 7e155ed01d3aba529e827157ffd4d3b3c09823cc..84e5a8bc3e8da34df696b949032ca3ed0b86b164 --- a/data/tuto3-1/vtt/tuto3-activite1-vid1-fr.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid1-fr.vtt @@ -1,59 +1,77 @@ -WEBVTT +WEBVTT FILE -00:00:04.520 --> 00:00:07.320 -Pour créer des images, l’IA +1 +00:00:04.020 --> 00:00:05.176 +Pour créer des images, -00:00:07.320 --> 00:00:09.760 -s'appuie sur des réseaux +2 +00:00:05.201 --> 00:00:07.770 +l’IA s'appuie sur des réseaux de neurones très particuliers : -00:00:09.760 --> 00:00:12.000 +3 +00:00:07.795 --> 00:00:09.793 les réseaux antagonistes génératifs, -00:00:12.000 --> 00:00:14.000 +4 +00:00:09.820 --> 00:00:13.488 plus connus sous le nom de GAN en anglais Generative Adversarial Networks. -00:00:14.000 --> 00:00:16.640 +5 +00:00:13.761 --> 00:00:16.488 Le GAN est une sorte d’abracadabra bagarreur -00:00:16.640 --> 00:00:18.040 +6 +00:00:16.513 --> 00:00:17.668 pour créer des images. -00:00:18.040 --> 00:00:20.720 +7 +00:00:18.433 --> 00:00:20.816 Le GAN est constitué de deux réseaux de neurones -00:00:20.720 --> 00:00:22.120 +8 +00:00:20.841 --> 00:00:22.361 en compétition l'un contre l'autre -00:00:22.120 --> 00:00:24.600 +9 +00:00:22.386 --> 00:00:24.600 - le générateur et le discriminateur. -00:00:24.600 --> 00:00:28.040 +10 +00:00:25.600 --> 00:00:27.443 Ces deux réseaux neurones s’affrontent -00:00:28.040 --> 00:00:30.080 +11 +00:00:27.468 --> 00:00:28.881 et l'un cherche à tromper l'autre. -00:00:30.080 --> 00:00:33.000 +12 +00:00:30.080 --> 00:00:33.430 Ici la tâche pour le générateur -est de générer +est de générer de nouvelles images, -00:00:33.000 --> 00:00:35.520 -de nouvelles images, +13 +00:00:33.455 --> 00:00:35.392 des milliers et des milliers d’images. -00:00:35.520 --> 00:00:37.800 -Et pour le discriminateur, de savoir +14 +00:00:36.244 --> 00:00:37.562 +Et pour le discriminateur, -00:00:37.800 --> 00:00:40.160 -s' il s’agit d’une image générée ou pas. +15 +00:00:37.587 --> 00:00:39.962 +de savoir s' il s’agit +d’une image générée ou pas. -00:00:40.160 --> 00:00:42.920 +16 +00:00:40.447 --> 00:00:43.228 Et vous, êtes-vous un bon réseau de neurones discriminateur ? -00:00:42.920 --> 00:00:45.680 +17 +00:00:43.400 --> 00:00:45.048 Saurez-vous débusquer l'IA ? + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid1-it.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid1-it.vtt index f28524ac4719cafcd95892f42e92ac04665a64c8..88e051e98c44c6ed4804e6d868dba3a5c072318a 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid1-it.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid1-it.vtt @@ -1,30 +1,77 @@ -WEBVTT -Kind: captions -Language: it +WEBVTT FILE -00:00:00.000 --> 00:00:02.017 -Per creare immagini, l'IA si affida a reti neurali molto speciali.... +1 +00:00:04.166 --> 00:00:06.966 +Per creare immagini, +l'intelligenza artificiale -00:00:02.017 --> 00:00:08.017 -Generative adversarial network, meglio conosciute come GAN. +2 +00:00:06.991 --> 00:00:09.368 +si affida a reti neurali molto speciali... -00:00:09.017 --> 00:00:12.017 -Le GAN sono una specie di magia per creare immagini. +3 +00:00:09.393 --> 00:00:11.492 +le Reti Generative Avversarie, -00:00:13.017 --> 00:00:15.017 -Una GAN consiste di due reti neurali che competono l'una contro l'altra +4 +00:00:11.531 --> 00:00:13.220 +meglio note come GAN. -00:00:16.017 --> 00:00:19.017 -- il generatore, - il discriminatore. +5 +00:00:13.404 --> 00:00:15.727 +La GAN è una sorta di abracadabra -00:00:20.017 --> 00:00:26.017 -Le due reti neurali competono tra loro e una cerca di ingannare l'altra. +6 +00:00:15.752 --> 00:00:17.300 +per la creazione di immagini. -00:00:27.017 --> 00:00:31.017 -Il compito del generatore è quello di generare migliaia e migliaia di nuove immagini. +7 +00:00:17.793 --> 00:00:20.376 +La GAN consiste di due reti neurali -00:00:32.017 --> 00:00:36.017 -Per il discriminatore, è sapere se l'immagine è generata o no. +8 +00:00:20.401 --> 00:00:21.889 +in competizione tra loro: + +9 +00:00:21.952 --> 00:00:24.550 +il generatore e il discriminatore. + +10 +00:00:24.575 --> 00:00:26.346 +Le due reti neurali + +11 +00:00:26.371 --> 00:00:28.015 +sono in competizione tra loro + +12 +00:00:28.040 --> 00:00:29.958 +e una cerca di ingannare l'altra. + +13 +00:00:30.018 --> 00:00:33.252 +Il compito del generatore +è quello di generare + +14 +00:00:33.277 --> 00:00:35.526 +migliaia e migliaia di nuove immagini. + +15 +00:00:35.780 --> 00:00:37.694 +Per il discriminatore, invece, + +16 +00:00:37.719 --> 00:00:40.696 +è capire se l'immagine +è stata generata o meno. + +17 +00:00:40.721 --> 00:00:43.361 +E voi, siete una buona rete neurale? + +18 +00:00:43.386 --> 00:00:45.999 +Sarete in grado di stanare l'IA? -00:00:37.017 --> 00:00:41.017 -E tu, sei una buona rete neurale? Sarai in grado di stanare l'IA? diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid1-sl.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid1-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..2277a91f6b4211f291b4d8619d1985b981bdc1c5 --- /dev/null +++ b/data/tuto3-1/vtt/tuto3-activite1-vid1-sl.vtt @@ -0,0 +1,69 @@ +WEBVTT FILE + +1 +00:00:04.520 --> 00:00:07.320 +Pri ustvarjanju podob se umetna inteligenca + +2 +00:00:07.320 --> 00:00:09.760 +zanaša na prav posebne nevronske mreže, + +3 +00:00:09.760 --> 00:00:14.000 +generativne kontradiktorne mreže (GAN). + +4 +00:00:14.000 --> 00:00:16.640 +Takšne mreže delujejo kot čarovnija + +5 +00:00:16.640 --> 00:00:18.040 +pri ustvarjanju podob. + +6 +00:00:18.040 --> 00:00:20.720 +Vsako sestavljata po dve nevronski mreži, + +7 +00:00:20.720 --> 00:00:22.120 +ki med seboj merita moči: + +8 +00:00:22.120 --> 00:00:24.600 +generator in diskriminator. + +9 +00:00:24.600 --> 00:00:28.040 +Mreži med seboj tekmujeta + +10 +00:00:28.040 --> 00:00:30.080 +in poskušata pretentati ena drugo. + +11 +00:00:30.080 --> 00:00:33.000 +Naloga generatorja je + +12 +00:00:33.000 --> 00:00:35.520 +ustvarjati na tisoče novih podob. + +13 +00:00:35.520 --> 00:00:37.800 +Naloga diskriminatorja pa je, da ugotovi, + +14 +00:00:37.800 --> 00:00:40.160 +ali je bila podoba +umetno generirana ali ne. + +15 +00:00:40.160 --> 00:00:42.920 +Kaj pa vi, ali delujete +kot učinkovita nevronska mreža? + +16 +00:00:42.920 --> 00:00:45.680 +Boste znali razločiti podobe, +generirane s pomočjo UI? + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid2-en.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid2-en.vtt index 63c25c30ab2bb24265d1468d6b099df43e673681..3255a4ae64b36da0d1e560bee8294861e235cabe 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid2-en.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid2-en.vtt @@ -1,4 +1,4 @@ -WEBVTT +WEBVTT FILE 1 00:00:04.397 --> 00:00:06.150 diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid2-fr.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid2-fr.vtt old mode 100644 new mode 100755 index 6af188a3e3c4ffdc7cb2d2e9f8ee8566b91aedce..9e5f29405aeff23a887c1435dadb384d054a7221 --- a/data/tuto3-1/vtt/tuto3-activite1-vid2-fr.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid2-fr.vtt @@ -1,69 +1,89 @@ -WEBVTT +WEBVTT FILE -00:00:04.360 --> 00:00:06.120 -Alors, êtes-vous un bon +1 +00:00:04.516 --> 00:00:05.180 +Alors, -00:00:06.120 --> 00:00:08.080 -réseau neuronal discriminateur ? +2 +00:00:05.205 --> 00:00:07.727 +êtes-vous +un bon réseau neuronal discriminateur ? -00:00:08.080 --> 00:00:10.640 +3 +00:00:08.508 --> 00:00:10.640 Chaque fois que l'image générée est considérée -00:00:10.640 --> 00:00:12.520 +4 +00:00:10.640 --> 00:00:12.664 comme réelle par le réseau discriminateur, -00:00:12.520 --> 00:00:14.600 +5 +00:00:12.789 --> 00:00:14.600 le réseau générateur renforce -00:00:14.600 --> 00:00:17.640 +6 +00:00:14.600 --> 00:00:17.068 ses paramètres et s'améliore ainsi progressivement. +7 00:00:17.640 --> 00:00:19.200 Certains éléments de l'image +8 00:00:19.200 --> 00:00:21.920 peuvent particulièrement trahir une IA générative : -00:00:21.920 --> 00:00:23.800 +9 +00:00:22.326 --> 00:00:23.568 le fond de l'image, -00:00:23.800 --> 00:00:24.840 +10 +00:00:23.998 --> 00:00:24.928 les dents, -00:00:24.840 --> 00:00:27.640 +11 +00:00:25.482 --> 00:00:27.421 l'asymétrie du visage et des yeux, -00:00:27.640 --> 00:00:30.000 +12 +00:00:28.070 --> 00:00:29.914 des zones inopinément floues, -00:00:30.000 --> 00:00:31.840 +13 +00:00:30.203 --> 00:00:31.710 une chevelure un peu bizarre. -00:00:31.840 --> 00:00:33.520 +14 +00:00:32.507 --> 00:00:33.773 En faisant attention, -00:00:33.520 --> 00:00:35.560 +15 +00:00:33.798 --> 00:00:36.758 les images générées par les GAN - -00:00:35.560 --> 00:00:37.360 sont encore reconnaissables, -00:00:37.360 --> 00:00:40.000 +16 +00:00:37.930 --> 00:00:40.249 mais il se pourrait bien que ces bugs soient corrigés -00:00:40.000 --> 00:00:41.640 -dans les années à venir et qu’il soit +17 +00:00:40.274 --> 00:00:41.188 +dans les années à venir -00:00:41.640 --> 00:00:44.000 -de plus en plus difficile +18 +00:00:41.213 --> 00:00:43.844 +et qu’il soit de plus en plus difficile de les distinguer ! -00:00:44.000 --> 00:00:45.600 +19 +00:00:44.321 --> 00:00:45.493 Vous voulez réessayer ? -00:00:45.600 --> 00:00:48.120 +20 +00:00:45.678 --> 00:00:47.338 C'est vous qui décidez ! + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid2-it.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid2-it.vtt index db8f3371af2a0a24d4d857646a9a4ebd02af58a9..f5ac854a910a06ed2464930c8211292755bd660f 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid2-it.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid2-it.vtt @@ -1,42 +1,79 @@ -WEBVTT -Kind: captions -Language: it +WEBVTT FILE -00:00:00.001 --> 00:00:03.600 -Allora, sei una buona rete neurale discriminante? +1 +00:00:04.533 --> 00:00:07.860 +Allora, siete una buona +rete neurale discriminante? -00:00:03.600 --> 00:00:08.750 -Ogni volta l'immagine generata è considerata reale dalla rete discriminante, +2 +00:00:08.033 --> 00:00:10.861 +Ogni volta che l'immagine +generata viene considerata -00:00:08.750 --> 00:00:13.634 -la rete generativa rinforza i suoi parametri e migliora progressivamente. +3 +00:00:10.886 --> 00:00:12.867 +reale dalla rete discriminante, -00:00:13.634 --> 00:00:17.817 -Alcuni elementi dell'immagine possono tradire particolarmente una IA generativa: +4 +00:00:12.892 --> 00:00:14.777 +la rete generativa rafforza -00:00:17.817 --> 00:00:19.800 -lo sfondo dell'immagine, +5 +00:00:14.802 --> 00:00:17.280 +i suoi parametri e migliora progressivamente. + +6 +00:00:17.280 --> 00:00:19.108 +Alcuni elementi dell'immagine -00:00:19.800 --> 00:00:21.767 +7 +00:00:19.133 --> 00:00:23.618 +possono tradire particolarmente bene +un'intelligenza artificiale generativa: + +8 +00:00:23.643 --> 00:00:25.837 +lo sfondo dell'immagine, i denti, -00:00:21.767 --> 00:00:23.817 +9 +00:00:25.862 --> 00:00:28.043 l'asimmetria del viso o degli occhi, -00:00:23.817 --> 00:00:25.884 +10 +00:00:28.083 --> 00:00:30.195 aree sfocate inaspettate, -00:00:25.884 --> 00:00:30.700 -un capello un po' strano. +11 +00:00:30.220 --> 00:00:32.214 +una capigliatura un po' strana. + +12 +00:00:32.302 --> 00:00:33.990 +Se si guarda con attenzione, + +13 +00:00:34.015 --> 00:00:35.915 +le immagini generate dalle GAN + +14 +00:00:35.940 --> 00:00:37.615 +sono ancora riconoscibili, + +15 +00:00:37.834 --> 00:00:40.496 +ma questi bug potrebbero essere corretti -00:00:30.700 --> 00:00:34.900 -Se guardate attentamente, le immagini generate dai GAN sono ancora riconoscibili, +16 +00:00:40.528 --> 00:00:43.947 +negli anni a venire +e sarà sempre più difficile distinguerle! -00:00:34.900 --> 00:00:40.717 -ma questi bug potrebbero essere corretti negli anni a venire e sarà sempre più difficile distinguerli! +17 +00:00:44.167 --> 00:00:45.767 +Volete riprovare? -00:00:40.717 --> 00:00:43.017 -Vuoi riprovare? +18 +00:00:45.792 --> 00:00:47.427 +A voi la scelta! -00:00:43.134 --> 00:00:45.617 -Tocca a te! diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid2-sl.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid2-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..740ea99311f27777a7ed08002736d6aede91b34b --- /dev/null +++ b/data/tuto3-1/vtt/tuto3-activite1-vid2-sl.vtt @@ -0,0 +1,85 @@ +WEBVTT FILE + +1 +00:00:04.360 --> 00:00:06.120 +Ali je torej vaša nevronska mreža + +2 +00:00:06.120 --> 00:00:08.080 +učinkovit diskriminator? + +3 +00:00:08.080 --> 00:00:10.640 +Vsakič, ko diskriminator generirano podobo + +4 +00:00:10.640 --> 00:00:12.520 +označi kot resnično, + +5 +00:00:12.520 --> 00:00:14.600 +generator podpre določene parametre + +6 +00:00:14.600 --> 00:00:17.280 +in se tako postopoma izboljšuje. + +7 +00:00:17.280 --> 00:00:19.200 +Še posebej določeni elementi +nam lahko razkrijejo, + +8 +00:00:19.200 --> 00:00:21.920 +da gre za podobo, generirano s pomočjo UI: + +9 +00:00:21.920 --> 00:00:23.800 +ozadje, + +10 +00:00:23.800 --> 00:00:24.840 +zobje, + +11 +00:00:24.840 --> 00:00:27.640 +asimetrija obraza ali oči, + +12 +00:00:27.640 --> 00:00:30.000 +zamegljena območja na nepričakovanih mestih, + +13 +00:00:30.000 --> 00:00:31.840 +nenavaden videz las ali pričeske. + +14 +00:00:31.840 --> 00:00:33.520 +Če pozorno pogledate, + +15 +00:00:33.520 --> 00:00:35.560 +so podobe ustvarjene z mrežami GAN + +16 +00:00:35.560 --> 00:00:37.360 +še vedno prepoznavne, + +17 +00:00:37.360 --> 00:00:41.640 +in te pomanjkljivosti bodo +v prihodnjih letih zagotovo odpravljene, + +18 +00:00:41.640 --> 00:00:44.000 +zato jih bo vse težje +razlikovati od resničnih! + +19 +00:00:44.000 --> 00:00:45.600 +Bi poskusili še enkrat? + +20 +00:00:45.600 --> 00:00:48.120 +Odločitev je vaša! + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid3-en.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid3-en.vtt index fffa4e3790df2b4bc3aa937e01beb501ab13653a..edb40a056d71aa08d3d147c358181cb46f8f3be1 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid3-en.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid3-en.vtt @@ -1,4 +1,4 @@ -WEBVTT +WEBVTT FILE 1 00:00:04.159 --> 00:00:06.160 @@ -37,11 +37,11 @@ or machine generated. But how long before the details 10 -00:00:22.969 --> 00:00:24.485 +00:00:22.969 --> 00:00:24.460 are no longer visible? 11 -00:00:24.485 --> 00:00:26.670 +00:00:24.710 --> 00:00:26.670 Are all types of content affected 12 diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid3-fr.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid3-fr.vtt old mode 100644 new mode 100755 index c4b34a32245e63476b2965346a6f20b459148496..95d71642526d238e87b0a731c55c22f71c0551da --- a/data/tuto3-1/vtt/tuto3-activite1-vid3-fr.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid3-fr.vtt @@ -1,58 +1,81 @@ -WEBVTT +WEBVTT FILE -00:00:04.120 --> 00:00:06.160 +1 +00:00:01.068 --> 00:00:04.146 +Réel ou généré par l'IA : +Quelle importance ? + +2 +00:00:04.421 --> 00:00:06.160 Ce nouveau type de réseau de neurones -00:00:06.160 --> 00:00:07.600 +3 +00:00:06.160 --> 00:00:07.390 soulève de nombreuses questions -00:00:07.600 --> 00:00:09.840 +4 +00:00:07.415 --> 00:00:09.966 d’autant que les GAN existent pour tous les médias : -00:00:09.840 --> 00:00:13.480 -texte, musique, images animées ou vidéos. +5 +00:00:10.099 --> 00:00:13.130 +texte, musique, +images animées ou vidéos. -00:00:13.480 --> 00:00:16.080 +6 +00:00:13.895 --> 00:00:15.559 Alors, vrai ou faux ? -00:00:16.080 --> 00:00:17.920 +7 +00:00:16.127 --> 00:00:18.394 Il devient essentiel d'apprendre +à reconnaître -00:00:17.920 --> 00:00:19.960 -à reconnaître si une image est réelle +8 +00:00:18.419 --> 00:00:19.614 +si une image est réelle -00:00:19.960 --> 00:00:21.280 +9 +00:00:19.639 --> 00:00:20.959 ou générée par une machine. -00:00:21.280 --> 00:00:22.960 +10 +00:00:21.053 --> 00:00:23.085 Mais combien de temps avant que ces détails -00:00:22.960 --> 00:00:24.480 +11 +00:00:23.110 --> 00:00:24.306 ne soient plus visibles ? -00:00:24.480 --> 00:00:26.640 +12 +00:00:24.337 --> 00:00:26.071 Tous les types de contenus sont concernés -00:00:26.640 --> 00:00:28.600 +13 +00:00:26.096 --> 00:00:29.306 par ces possibilités créatives ou devrais-je dire génératives. -00:00:28.600 --> 00:00:30.640 +14 +00:00:29.377 --> 00:00:32.408 De l’homme ou de la machine, qui est l'auteur de ces nouvelles images ? -00:00:30.640 --> 00:00:32.760 +15 +00:00:32.433 --> 00:00:34.533 La personne qui a créé le programme ? -00:00:32.760 --> 00:00:34.440 +16 +00:00:34.603 --> 00:00:37.134 Le programme qui a créé des images - -00:00:34.440 --> 00:00:35.680 qui n'existaient pas ? -00:00:35.680 --> 00:00:37.560 +17 +00:00:37.206 --> 00:00:38.923 Et si on ne sait pas si c'est réel, -00:00:37.560 --> 00:00:40.280 +18 +00:00:38.948 --> 00:00:40.970 y a-t-il annihilation de la fiction ? + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid3-it.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid3-it.vtt index a62ac2b2a2d0ff4ee794620c1ff5d9a30af4d311..490159ad2a4d9dc65c380381dae7c11c5e7f536f 100644 --- a/data/tuto3-1/vtt/tuto3-activite1-vid3-it.vtt +++ b/data/tuto3-1/vtt/tuto3-activite1-vid3-it.vtt @@ -1,34 +1,75 @@ -WEBVTT -Kind: captions -Language: it +WEBVTT FILE -00:00:00.000 --> 00:00:02.120 -Questo nuovo tipo di rete neurale solleva molte domande +1 +00:00:03.918 --> 00:00:05.919 +Questo nuovo tipo di rete neurale -00:00:02.120 --> 00:00:08.600 -... poiché queste GAN esistono per tutti i media: -testo, musica, immagini animate o video +2 +00:00:05.944 --> 00:00:07.325 +solleva molte domande, -00:00:08.600 --> 00:00:10.680 -Allora, vero o falso? +3 +00:00:07.350 --> 00:00:10.726 +poiché queste GAN esistono +per tutti i formati multimediali: -00:00:10.680 --> 00:00:16.700 -Sta diventando essenziale imparare a riconoscere se -un'immagine è reale o generata dalla macchina. +4 +00:00:10.751 --> 00:00:13.484 +testo, musica, immagini animate e video. -00:00:16.700 --> 00:00:22.680 -Ma quanto tempo prima che i dettagli non siano più visibili? +5 +00:00:13.827 --> 00:00:16.040 +Quindi, vero o falso? -00:00:22.680 --> 00:00:28.800 -Tutti i tipi di contenuto sono interessati da queste possibilità generative? +6 +00:00:16.077 --> 00:00:18.095 +Sta diventando essenziale imparare -00:00:28.800 --> 00:00:32.160 +7 +00:00:18.127 --> 00:00:19.767 +a riconoscere se un'immagine è reale + +8 +00:00:19.792 --> 00:00:21.256 +o generata da una macchina. + +9 +00:00:21.281 --> 00:00:23.542 +Ma quanto ci vorrà prima che i dettagli + +10 +00:00:23.567 --> 00:00:24.677 +non siano più visibili? + +11 +00:00:24.702 --> 00:00:27.114 +Tutti i tipi di contenuti sono interessati + +12 +00:00:27.139 --> 00:00:29.114 +da queste possibilità generative? + +13 +00:00:29.139 --> 00:00:31.200 Chi è l'autore di queste immagini? -00:00:32.160 --> 00:00:38.880 +14 +00:00:31.225 --> 00:00:33.223 La persona che ha creato il programma? -Il programma che ha creato immagini che non esistevano? -00:00:38.880 --> 00:00:44.840 +15 +00:00:33.248 --> 00:00:35.143 +Il programma che ha creato immagini + +16 +00:00:35.168 --> 00:00:36.336 +che non esistevano? + +17 +00:00:36.361 --> 00:00:38.489 E se non sappiamo se è reale, -c'è un annientamento della finzione? + +18 +00:00:38.514 --> 00:00:40.879 +c'è un annichilimento della finzione? + diff --git a/data/tuto3-1/vtt/tuto3-activite1-vid3-sl.vtt b/data/tuto3-1/vtt/tuto3-activite1-vid3-sl.vtt new file mode 100644 index 0000000000000000000000000000000000000000..639aa686c7d8bceec6496eca3b970abde7868c40 --- /dev/null +++ b/data/tuto3-1/vtt/tuto3-activite1-vid3-sl.vtt @@ -0,0 +1,82 @@ +WEBVTT FILE + +1 +00:00:04.120 --> 00:00:06.160 +Generativne kontradiktorne mreže + +2 +00:00:06.160 --> 00:00:07.600 +sprožajo veliko vprašanj, + +3 +00:00:07.600 --> 00:00:09.840 +saj je ta nova vrsta nevronskih +mrež uporabna za vse tipe medijev: + +4 +00:00:09.840 --> 00:00:13.480 +za besedilo, glasbo, +animirane podobe ali video posnetke. + +5 +00:00:13.480 --> 00:00:16.080 +Ali je torej to, +kar vidimo, resnično, ali lažno? + +6 +00:00:16.080 --> 00:00:17.920 +Veščina razločevanja med tem, + +7 +00:00:17.920 --> 00:00:19.960 +ali je določena podoba +resnična ali strojno generirana, + +8 +00:00:19.960 --> 00:00:21.280 +postaja vse bolj pomembna. + +9 +00:00:21.280 --> 00:00:22.960 +Toda koliko časa nas še loči od trenutka, + +10 +00:00:22.960 --> 00:00:24.480 +ko drobnih razlik ne bo več mogoče razločiti? + +11 +00:00:24.480 --> 00:00:26.640 +Ali možnosti, ki jih prinaša generativna UI, + +12 +00:00:26.640 --> 00:00:28.600 +vplivajo na vse vrste vsebin? + +13 +00:00:28.600 --> 00:00:30.640 +Kako je z avtorstvom? + +14 +00:00:30.640 --> 00:00:32.760 +Je avtor podobe oseba, +ki je izdelala računalniški program? + +15 +00:00:32.760 --> 00:00:34.440 +Ali pa je to program, +ki je ustvaril podobe, + +16 +00:00:34.440 --> 00:00:35.680 +ki pred tem niso obstajale? + +17 +00:00:35.680 --> 00:00:37.560 +In – če nismo prepričani, +ali je podoba resnična + +18 +00:00:37.560 --> 00:00:40.280 +– ali to pomeni, +da fikcija ne obstaja več? +