Commit 7dd06fa3 authored by POGODALLA Sylvain's avatar POGODALLA Sylvain
Browse files

semantics for TAG ok

parent 797ae262
......@@ -13,7 +13,7 @@ signature derivation_trees =
C_does_think : Sa -> VPa -> N -> Sa ;
I_vp : VPa;
I_n : Na;
I_n_d : Na_d;
(* I_n_d : Na_d;*)
I_s : Sa;
end
......@@ -42,10 +42,14 @@ signature semantics =
e,t:type;
dog,cat,sleep : e->t;
love,chase:e -> e -> t;
love,chase,like:e -> e -> t;
j,m,b,p:e;
slowly : t -> t;
seem : (e -> t) -> e -> t;
new,big,black:e ->t;
claim,say,think : e -> t -> t;
WHO : (e -> t) -> t;
infix & : t -> t -> t;
infix > : t -> t -> t;
......@@ -58,18 +62,18 @@ end
lexicon tag_semantics(derivation_trees) : semantics =
S := t;
N := (e -> t) -> t;
Sa := (e -> t) -> (e -> t);
Na := (e ->t) -> (e ->t);
Sa := t -> t;
Na := (e =>t) -> (e =>t);
VPa := (e -> t) -> (e -> t);
Na_d := (e ->t) -> (e -> t) -> t;
Na_d := (e => t) -> (e -> t) -> t;
WH := (e ->t) -> t;
C_dog := lambda d a . d (a (lambda x.dog x)) ;
C_cat := lambda d a . d (a (lambda x.cat x)) ;
C_sleeps := lambda s a S.S(s(lambda x.a(sleep x)));
C_chases := lambda s a S O.S(s(lambda x.O(lambda y.a(chase x y))));
C_loves := lambda s a S O.S(s(lambda x.O(lambda y.a(love x y))));
C_to_love := lambda s a O S.S(s(lambda x.O(lambda y.a(love x y))));
C_dog := lambda d a . d (a (Lambda x.dog x)) ;
C_cat := lambda d a . d (a (Lambda x.cat x)) ;
C_sleeps := lambda s a S.s(S(a(lambda x.(sleep x))));
C_chases := lambda s a S O.s(S(a(lambda x.O(lambda y.(chase x y)))));
C_loves := lambda s a S O.s(S(a(lambda x.O(lambda y.(love x y)))));
C_to_love := lambda s a O S.s(S(a(lambda x.O(lambda y.(love x y)))));
C_every := lambda n.lambda P.All x. (n x) > (P x) ;
C_a := lambda n.lambda P.Ex x. (n x) & (P x);
C_slowly := lambda vp r. vp (lambda x. slowly (r x));
......@@ -77,18 +81,18 @@ lexicon tag_semantics(derivation_trees) : semantics =
C_new := lambda a n . a (Lambda x.(new x)&(n x));
C_big := lambda a n . a (Lambda x.(big x)&(n x));
C_black := lambda a n . a (Lambda x.(black x)&(n x));
C_claims := lambda sa a S comp.S(sa(lambda x.a(claim x comp)));
C_said := lambda sa a S comp.S(sa(lambda x.a(say x comp)));
C_claims := lambda sa a S comp. sa (S(a(lambda x.claim x comp)));
C_said := lambda sa a S comp. sa (S(a(lambda x.say x comp)));
C_john := lambda P.P j;
C_mary := lambda P.P m;
C_paul := lambda P.P p;
C_bill := lambda P.P b;
C_who := lambda P.WHO P;
C_liked := lambda sa a w S.w(lambda y.S(sa(lambda x. a(like x y))));
C_does_think := lambda sa a S comp. S(sa(lambda x.s(think x comp)));
C_liked := lambda sa a w S.w(lambda y.sa(S(a(lambda x.(like x y)))));
C_does_think := lambda sa a S comp. sa(S(a(lambda x.(think x comp))));
I_vp := lambda x.x;
I_n := lambda x.x;
I_n_d := lambda x.x;
(* I_n_d := lambda x.x;*)
I_s := lambda x.x;
end
......@@ -120,5 +124,5 @@ lexicon tag_syntax (derivation_trees) : derived_trees =
C_does_think := lambda s_root a subj s_foot . s_root (S2 does (S2 subj (a (VP2 think s_foot))));
I_n,I_vp,I_n_d,I_s := lambda x.x;
I_n,I_vp,I_s := lambda x.x;
end
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment